

Welcome to the ricecooker docs!

Quickstart

Developers who are new to the ricecooker library can get started here.

	README

	Tutorial

Kolibri content platform

The Kolibri content platform is described in the following docs, which should be
accessible to both technical and non-technical audiences.

	Kolibri content platform

	Supported content types

Ricecooker API reference

The detailed information for content developers (chef authors) is presented here:

	Using the ricecooker library
	Step 1: Obtain a Studio Authorization Token

	Step 2: Create a Sushi Chef script

	Step 3: Add more content nodes and files

	Step 4: Adding exercises

	Nodes
	Overview

	Content node metadata

	Topic nodes

	Content nodes

	Exercise nodes

	Files
	File objects

	Base classes

	Audio files

	Document files

	HTMLZip files

	Videos files

	Thumbnail files

	File size limits

	Kolibri Language Codes
	More lookup helper methods

	HTML5App nodes and HTML5Zip files
	Example of HTML5App nodes

	Usability guidelines

	Links and navigation

	HTML Writer utility class

	Static assets download utility

	Starter template

	Exercise and exercise questions

	Installation
	Software prerequisites

	Stable release

	Install from github

	Install from source

	Running chef scripts
	Executable scripts

	Ricecooker CLI

	Run scripts

	Daemon mode

Ricecooker Utils

The ricecooker library includes a number of utilities and helper functions:

	Parsing HTML using BeautifulSoup

	CSV Metadata Workflow

	CSV Exercises Workflow

	Writing a SousChef

Ricecooker developer docs

To learn about the inner workings of the ricecooker library, consult the following:

	Notes for ricecooker library developers

	Running chef scripts

	Daemon mode

	SushOps

	Command line interface

	Contributing

	Credits

	Ricecooker Python API

	History

Indices and tables

	Index

	Module Index

	Search Page

ricecooker

The ricecooker library is a framework for creating Kolibri content
channels and uploading them to Kolibri
Studio [https://studio.learningequality.org/], which is the central
content server that Kolibri [http://learningequality.org/kolibri/]
applications talk to when they import content.

The Kolibri content pipeline is pictured below:

[image: The Kolibri Content Pipeline]

This ricecooker framework is the “main actor” in the first part of
the content pipeline, and touches all aspects of the pipeline within the
region highlighted in blue in the above diagram.

Before we continue, let’s have some definitions:

	A Kolibri channel is a tree-like data structure that consist of
the following content nodes:

	Topic nodes (folders)

	Content types:

	Document (ePub and PDF files)

	Audio (mp3 files)

	Video (mp4 files)

	HTML5App zip files (generic container for web content: HTML+JS+CSS)

	Exercises

	A sushi chef is a Python script that uses the ricecooker
library to import content from various sources, organize content into
Kolibri channels and upload the channel to Kolibri Studio.

Overview

Use the following shortcuts to jump to the most relevant parts of the
ricecooker documentation depending on your role:

	Content specialists and Administrators can read the non-technical
part of the documentation to learn about how content works in the
Kolibri platform.

	The best place to start is the Kolibri Platform overview

	Read more about the supported content types
here

	Content curators can consult this
document [https://docs.google.com/document/d/1slwoNT90Wqu0Rr8MJMAEsA-9LWLRvSeOgdg9u7HrZB8/edit?usp=sharing]
for information about how to prepare “spec sheets” that guide
developers how to import content into the Kolibri ecosystem.

	The Non-technical of particular interest is the
CSV workflow – channel metadata as spreadsheets

	Chef authors can read the remainder of this README, and get
started using the ricecooker library by following these first
steps:

	Quickstart,
which will introduce you to the steps needed to create a sushi
chef script.

	After the quickstart, you should be ready to take things into your
own hands, and complete all steps in the ricecooker
tutorial [https://gist.github.com/jayoshih/6678546d2a2fa3e7f04fc9090d81aff6].

	The next step after that is to read the ricecooker usage
docs,
which is also available in Jupyter notebooks under
docs/tutorial/.
More detailed technical documentation is available on the
following topics:

	Installation

	Content Nodes

	File types

	Exercises

	HTML5 apps

	Parsing HTML

	Running chef scripts
to learn about the command line args, for controlling chef
operation, managing caches, and other options.

	Sushi chef style guide [https://docs.google.com/document/d/1_Wh7IxPmFScQSuIb9k58XXMbXeSM0ZQLkoXFnzKyi_s/edit]

	Ricecooker developers should read all the documentation for chef
authors, and also consult the docs in the
developer
folder for additional information info about the “behind the scenes”
work needed to support the Kolibri content pipeline:

	Running chef scripts, also known as chefops.

	Running chef scripts in daemon mode

	Managing the content pipeline,
also known as sushops.

	Command line interface,

	Notes for ricecooker library developers.

Installation

We’ll assume you have a Python 3 installation on your computer and are
familiar with best practices for working with Python codes (e.g.
virtualenv or pipenv). If this is not the case, you can consult
the Kolibri developer docs as a guide for setting up a Python
virtualenv [http://kolibri-dev.readthedocs.io/en/latest/start/getting_started.html#virtual-environment].

The ricecooker library is a standard Python library distributed
through PyPI:

	Run pip install ricecooker to install You can then use
import ricecooker in your chef script.

	Some of functions in ricecooker.utils require additional
software:

	Make sure you install the command line tool
ffmpeg [https://ffmpeg.org/]

	Running javascript code while scraping webpages requires the
phantomJS browser. You can run npm install phantomjs-prebuilt
in your chef’s working directory.

For more details and install options, see
the installation guide.

Simple chef example

This is a sushi chef script that uses the ricecooker library to
create a Kolibri channel with a single topic node (Folder), and puts a
single PDF content node inside that folder.

#!/usr/bin/env python
from ricecooker.chefs import SushiChef
from ricecooker.classes.nodes import ChannelNode, TopicNode, DocumentNode
from ricecooker.classes.files import DocumentFile
from ricecooker.classes.licenses import get_license

class SimpleChef(SushiChef):
 channel_info = {
 'CHANNEL_TITLE': 'Potatoes info channel',
 'CHANNEL_SOURCE_DOMAIN': '<domain.org>', # where you got the content (change me!!)
 'CHANNEL_SOURCE_ID': '<unique id for channel>', # channel's unique id (change me!!)
 'CHANNEL_LANGUAGE': 'en', # le_utils language code
 'CHANNEL_THUMBNAIL': 'https://upload.wikimedia.org/wikipedia/commons/b/b7/A_Grande_Batata.jpg', # (optional)
 'CHANNEL_DESCRIPTION': 'What is this channel about?', # (optional)
 }

 def construct_channel(self, **kwargs):
 channel = self.get_channel(**kwargs)
 potato_topic = TopicNode(title="Potatoes!", source_id="<potatos_id>")
 channel.add_child(potato_topic)
 doc_node = DocumentNode(
 title='Growing potatoes',
 description='An article about growing potatoes on your rooftop.',
 source_id='pubs/mafri-potatoe',
 license=get_license('CC BY', copyright_holder='University of Alberta'),
 language='en',
 files=[DocumentFile(path='https://www.gov.mb.ca/inr/pdf/pubs/mafri-potatoe.pdf',
 language='en')],
)
 potato_topic.add_child(doc_node)
 return channel

if __name__ == '__main__':
 """
 Run this script on the command line using:
 python simple_chef.py -v --reset --token=YOURTOKENHERE9139139f3a23232
 """
 simple_chef = SimpleChef()
 simple_chef.main()

Let’s assume the above code snippet is saved as the file
simple_chef.py.

You can run the chef script by passing the appropriate command line
arguments:

python simple_chef.py -v --reset --token=YOURTOKENHERE9139139f3a23232

The most important argument when running a chef script is --token
which is used to pass in the Studio Access Token which you can obtain
from your profile’s settings
page [http://studio.learningequality.org/settings/tokens].

The flags -v (verbose) and --reset are generally useful in
development. These make sure the chef script will start the process from
scratch and displays useful debugging information on the command line.

To see all the ricecooker command line options, run
python simple_chef.py -h. For more details about running chef
scripts see the chefops
page.

If you get an error when running the chef, make sure you’ve replaced
YOURTOKENHERE9139139f3a23232 by the token you obtained from Studio.
Also make sure you’ve changed the value of
channel_info['CHANNEL_SOURCE_DOMAIN'] and
channel_info['CHANNEL_SOURCE_ID'] instead of using the default
values.

Next steps

	See the usage docs <usage> for more explanations about the above code.

	See nodes <nodes> to learn how to create different content node types.

	See file <files> to learn about the file types supported, and how to create them.

Further reading

	Read the Kolibri Studio docs [http://kolibri-studio.readthedocs.io/en/latest/] to learn
more about the Kolibri Studio features

	Read the Kolibri user guide [http://kolibri.readthedocs.io/en/latest/] to learn how to
install Kolibri on your machine (useful for testing channels)

	Read the Kolibri developer docs [http://kolibri-dev.readthedocs.io/en/latest/] to learn about
the inner workings of Kolibri.

Tutorial

	Tutorials

	The ricecooker quick start

	Languages

	ricecooker exercises

Tutorials

This folder contains interactive tutorials that demonstrate how to build sushi chefs.

	quickstart : basic steps for creating a channel from the README

	languages: examples of how to work with the internal language codes

	exercises: examples of exercise questions types supported by ricecooker

	nodes [TODO]

	files [TODO]

Install

pip install jupyter

then run

jupyter notebook

and go to the directory docs/tutorial/ to see the notebooks

The ricecooker quick start

This mini-tutorial will walk you through the steps of running a simple
chef script SimpleChef that uses the ricecooker framework to
upload a content channel to the Kolibri Studio server.

We’ll go over the same steps as described in the
usage, but this time showing the expected output of
each step.

Running the notebooks

To follow along and run the code in this notebook, you’ll need to clone
the ricecooker repository, crate a virtual environement, install
ricecooker using pip install ricecooker, install Jypyter
notebook using pip install jupyter, then start the jupyter notebook
server by running jupyter notebook. You will then be able to run all
the code sections in this notebook and poke around.

Step 1: Obtain a Studio Authorization Token

You will need a` Studio Authorization Token to create a channel on
Kolibri Studio. In order to obtain such a token: 1. Create an account on
Kolibri Studio [https://studio.learningequality.org/]. 2. Navigate
to the Tokens tab under your Settings page. 3. Copy the given
authorization token to a safe place.

You must pass the token on the command line as
--token=<your-auth-token> when calling your chef script.
Alternatively, you can create a file to store your token and pass in the
command line argument --token="path/to/file.txt".

Step 2: Creating a Sushi Chef class

We’ll use following simple chef script as an the running example in this
section. You can find the full source code of it
here [https://github.com/learningequality/ricecooker/blob/master/examples/simple_example.py].

Mmmm, potato… potato give you power!

from ricecooker.chefs import SushiChef
from ricecooker.classes.nodes import ChannelNode, TopicNode, DocumentNode
from ricecooker.classes.files import DocumentFile
from ricecooker.classes.licenses import get_license

class SimpleChef(SushiChef):
 channel_info = {
 'CHANNEL_TITLE': 'Potatoes info channel',
 'CHANNEL_SOURCE_DOMAIN': '<yourdomain.org>', # where you got the content
 'CHANNEL_SOURCE_ID': '<unique id for channel>', # channel's unique id
 'CHANNEL_LANGUAGE': 'en', # le_utils language code
 'CHANNEL_THUMBNAIL': 'https://upload.wikimedia.org/wikipedia/commons/b/b7/A_Grande_Batata.jpg', # (optional)
 'CHANNEL_DESCRIPTION': 'What is this channel about?', # (optional)
 }

 def construct_channel(self, **kwargs):
 channel = self.get_channel(**kwargs)
 potato_topic = TopicNode(title="Potatoes!", source_id="<potatos_id>")
 channel.add_child(potato_topic)
 doc_node = DocumentNode(
 title='Growing potatoes',
 description='An article about growing potatoes on your rooftop.',
 source_id='pubs/mafri-potatoe',
 license=get_license('CC BY', copyright_holder='University of Alberta'),
 language='en',
 files=[DocumentFile(path='https://www.gov.mb.ca/inr/pdf/pubs/mafri-potatoe.pdf',
 language='en')],
)
 potato_topic.add_child(doc_node)
 return channel

Note: make sure you change the values of CHANNEL_SOURCE_DOMAIN
and CHANNEL_SOURCE_ID before you try running this script. The
combination of these two values is used to compute the channel_id
for the Kolibri channel you’re creating. If you keep the lines above
unchanged, you’ll get an error because the channel with source domain
‘gov.mb.ca’ and source id ‘website_docs’ already exists on Kolibri
Studio.

Run of you chef by creating an instance of the chef class and calling
it’s run method:

mychef = SimpleChef()
args = {'token': 'YOURTOKENHERE9139139f3a23232',
 'reset': True,
 'verbose': True,
 'publish': True,
 'nomonitor': True}
options = {}
mychef.run(args, options)

Logged in with username you@yourdomain.org
Ricecooker v0.6.15 is up-to-date.
Running get_channel...

* Starting channel build process *

Calling construct_channel...
 Setting up initial channel structure...
 Validating channel structure...
 Potatoes info channel (ChannelNode): 2 descendants
 Potatoes! (TopicNode): 1 descendant
 Growing potatoes (DocumentNode): 1 file
 Tree is valid

Downloading files...
Processing content...
 Downloading https://www.gov.mb.ca/inr/pdf/pubs/mafri-potatoe.pdf
 --- Downloaded 3641693a88b37e8d0484c340a83f9364.pdf
 Downloading https://upload.wikimedia.org/wikipedia/commons/b/b7/A_Grande_Batata.jpg
 --- Downloaded 290c80ed7ce4cf117772f29dda76413c.jpg
 All files were successfully downloaded
Getting file diff...

Checking if files exist on Kolibri Studio...
 Got file diff for 2 out of 2 files
Uploading files...

Uploading 0 new file(s) to Kolibri Studio...
Creating channel...

Creating tree on Kolibri Studio...
 Creating channel Potatoes info channel
 Preparing fields...
(0 of 2 uploaded) Processing Potatoes info channel (ChannelNode)
(1 of 2 uploaded) Processing Potatoes! (TopicNode)
 All nodes were created successfully.
Upload time: 39.441051s
Publishing channel...

Publishing tree to Kolibri...

DONE: Channel created at https://contentworkshop.learningequality.org/channels/47147660ecb850bfb71590bf7d1ca971/edit

Congratulations, you put the potatoes on the internet! You’re probably
already a legend in Ireland!

Creating more nodes

Now that you have a working example of a simple chef you can extend it
by adding more content types. - Complete the ricecooker hands-on
tutorial:
https://gist.github.com/jayoshih/6678546d2a2fa3e7f04fc9090d81aff6 -
usage
docs [https://github.com/learningequality/ricecooker/blob/master/docs/usage.md]
for more explanations about the above code. - See to learn how to create
different content node types. - See
files [https://github.com/learningequality/ricecooker/blob/master/docs/files.md]
to learn about the file types supported, and how to create them.

Languages

This tutorial will explain how to set the language property for
various nodes and file objects when using the ricecooker framework.

Explore language objects and language codes

First we must import the le-utils pacakge. The languages supported
by Kolibri and the Content Curation Server are provided in
le_utils.constants.languages.

from le_utils.constants import languages as languages

can lookup language using language code
language_obj = languages.getlang('en')
language_obj

Language(native_name='English', primary_code='en', subcode=None, name='English', ka_name=None)

can lookup language using language name (the new le_utils version has not shipped yet)
language_obj = languages.getlang_by_name('English')
language_obj

Language(native_name='English', primary_code='en', subcode=None, name='English', ka_name=None)

all `language` attributed (channel, nodes, and files) need to use language code
language_obj.code

'en'

from le_utils.constants.languages import getlang_by_native_name

lang_obj = getlang_by_native_name('français')
print(lang_obj)
print(lang_obj.code)

Language(native_name='Français, langue française', primary_code='fr', subcode=None, name='French', ka_name='francais')
fr

The above language code is an internal representaiton that uses
two-letter codes, and sometimes has a locale information, e.g.,
pt-BR for Brazilian Portuiguese. Sometimes the internal code
representaiton for a language is the three-letter vesion, e.g., zul
for Zulu.

Create chef class

We now create subclass of ricecooker.chefs.SushiChef and defined its
get_channel and construct_channel methods.

For the purpose of this example, we’ll create three topic nodes in
different languages that contain one document in each.

from ricecooker.chefs import SushiChef
from ricecooker.classes.nodes import ChannelNode, TopicNode, DocumentNode
from ricecooker.classes.files import DocumentFile
from le_utils.constants import languages
from le_utils.constants import licenses

class MySushiChef(SushiChef):
 """
 A sushi chef that creates a channel with content in EN, FR, and SP.
 """
 def get_channel(self, **kwargs):
 channel = ChannelNode(
 source_domain='testing.org',
 source_id='lang_test_chanl',
 title='Languages test channel',
 thumbnail='http://themes.mysitemyway.com/_shared/images/flags.png',
 language = languages.getlang('en').code # set global language for channel (will apply as default option to all content items in this channel)
)
 return channel

 def construct_channel(self, **kwargs):
 # create channel
 channel = self.get_channel(**kwargs)

 # create the English topic, add a DocumentNode to it
 topic = TopicNode(
 source_id="<en_topic_id>",
 title="New Topic in English",
 language=languages.getlang('en').code,
)
 doc_node = DocumentNode(
 source_id="<en_doc_id>",
 title='Some doc in English',
 description='This is a sample document node in English',
 files=[DocumentFile(path='samplefiles/documents/doc_EN.pdf')],
 license=licenses.PUBLIC_DOMAIN,
 language=languages.getlang('en').code,
)
 topic.add_child(doc_node)
 channel.add_child(topic)

 # create the Spanish topic, add a DocumentNode to it
 topic = TopicNode(
 source_id="<es_topic_id>",
 title="Topic in Spanish",
 language=languages.getlang('es-MX').code,
)
 doc_node = DocumentNode(
 source_id="<es_doc_id>",
 title='Some doc in Spanish',
 description='This is a sample document node in Spanish',
 files=[DocumentFile(path='samplefiles/documents/doc_ES.pdf')],
 license=licenses.PUBLIC_DOMAIN,
 language=languages.getlang('es-MX').code,
)
 topic.add_child(doc_node)
 channel.add_child(topic)

 # create the French topic, add a DocumentNode to it
 topic = TopicNode(
 source_id="<fr_topic_id>",
 title="Topic in French",
 language=languages.getlang('fr').code,
)
 doc_node = DocumentNode(
 source_id="<fr_doc_id>",
 title='Some doc in French',
 description='This is a sample document node in French',
 files=[DocumentFile(path='samplefiles/documents/doc_FR.pdf')],
 license=licenses.PUBLIC_DOMAIN,
 language=languages.getlang('fr').code,
)
 topic.add_child(doc_node)
 channel.add_child(topic)

 return channel

Run of you chef by creating an instance of the chef class and calling
it’s run method:

mychef = MySushiChef()
args = {'token': 'YOURTOKENHERE9139139f3a23232',
 'reset': True,
 'verbose': True,
 'publish': True}
options = {}
mychef.run(args, options)

Logged in with username you@yourdomain.org
Ricecooker v0.6.19 is up-to-date.
Running get_channel...
run_id: 27a7726c4b2b418fb0f7b1842f6abe84

* Starting channel build process *

Calling construct_channel...
 Setting up initial channel structure...
 Validating channel structure...
 Languages test channel (ChannelNode): 6 descendants
 New Topic in English (TopicNode): 1 descendant
 Some doc in English (DocumentNode): 1 file
 Topic in Spanish (TopicNode): 1 descendant
 Some doc in Spanish (DocumentNode): 1 file
 Topic in French (TopicNode): 1 descendant
 Some doc in French (DocumentNode): 1 file
 Tree is valid

Downloading files...
Processing content...
 --- Downloaded e8b1fe37ce3da500241b4af4e018a2d7.pdf
 --- Downloaded cef22cce0e1d3ba08861fc97476b8ccf.pdf
 --- Downloaded 6c8730e3e2554e6eac0ad79304bbcc68.pdf
 --- Downloaded de498249b8d4395a4ef9db17ec02dc91.png
 All files were successfully downloaded
Getting file diff...

Checking if files exist on Kolibri Studio...
 Got file diff for 4 out of 4 files
Uploading files...

Uploading 0 new file(s) to Kolibri Studio...
Creating channel...

Creating tree on Kolibri Studio...
 Creating channel Languages test channel
 Preparing fields...
(0 of 6 uploaded) Processing Languages test channel (ChannelNode)
(3 of 6 uploaded) Processing New Topic in English (TopicNode)
(4 of 6 uploaded) Processing Topic in Spanish (TopicNode)
(5 of 6 uploaded) Processing Topic in French (TopicNode)
 All nodes were created successfully.
Upload time: 6.641212s
Publishing channel...

Publishing tree to Kolibri...

DONE: Channel created at https://contentworkshop.learningequality.org/channels/cba91822d3ab5a748cd19532661d690f/edit

Congratulations, you put three languages on the internet!

Example 2: YouTube video with subtitles in multiple languages

You can use the library youtube_dl to get lots of useful metadata
about videos and playlists, including the which language subtitle are
vailable for a video.

import youtube_dl

ydl = youtube_dl.YoutubeDL({
 'quiet': True,
 'no_warnings': True,
 'writesubtitles': True,
 'allsubtitles': True,
})

youtube_id = 'FN12ty5ztAs'

info = ydl.extract_info(youtube_id, download=False)
subtitle_languages = info["subtitles"].keys()

print(subtitle_languages)

dict_keys(['en', 'fr', 'zu'])

Full sushi chef example

The YoutubeVideoWithSubtitlesSushiChef class below shows how to
create a channel with youtube video and upload subtitles files with all
available languages.

from ricecooker.chefs import SushiChef
from ricecooker.classes import licenses
from ricecooker.classes.nodes import ChannelNode, TopicNode, VideoNode
from ricecooker.classes.files import YouTubeVideoFile, YouTubeSubtitleFile
from ricecooker.classes.files import is_youtube_subtitle_file_supported_language

import youtube_dl
ydl = youtube_dl.YoutubeDL({
 'quiet': True,
 'no_warnings': True,
 'writesubtitles': True,
 'allsubtitles': True,
})

Define the license object with necessary info
TE_LICENSE = licenses.SpecialPermissionsLicense(
 description='Permission granted by Touchable Earth to distribute through Kolibri.',
 copyright_holder='Touchable Earth Foundation (New Zealand)'
)

class YoutubeVideoWithSubtitlesSushiChef(SushiChef):
 """
 A sushi chef that creates a channel with content in EN, FR, and SP.
 """
 channel_info = {
 'CHANNEL_SOURCE_DOMAIN': 'learningequality.org', # change me!
 'CHANNEL_SOURCE_ID': 'sample_youtube_video_with_subs', # change me!
 'CHANNEL_TITLE': 'Youtube subtitles downloading chef',
 'CHANNEL_LANGUAGE': 'en',
 'CHANNEL_THUMBNAIL': 'http://themes.mysitemyway.com/_shared/images/flags.png',
 'CHANNEL_DESCRIPTION': 'This is a test channel to make sure youtube subtitle languages lookup works'
 }

 def construct_channel(self, **kwargs):
 # create channel
 channel = self.get_channel(**kwargs)

 # get all subtitles available for a sample video
 youtube_id = 'FN12ty5ztAs'
 info = ydl.extract_info(youtube_id, download=False)
 subtitle_languages = info["subtitles"].keys()
 print('Found subtitle_languages = ', subtitle_languages)

 # create video node
 video_node = VideoNode(
 source_id=youtube_id,
 title='Youtube video',
 license=TE_LICENSE,
 derive_thumbnail=True,
 files=[YouTubeVideoFile(youtube_id=youtube_id)],
)

 # add subtitles in whichever languages are available.
 for lang_code in subtitle_languages:
 if is_youtube_subtitle_file_supported_language(lang_code):
 video_node.add_file(
 YouTubeSubtitleFile(
 youtube_id=youtube_id,
 language=lang_code
)
)
 else:
 print('Unsupported subtitle language code:', lang_code)

 channel.add_child(video_node)

 return channel

chef = YoutubeVideoWithSubtitlesSushiChef()
args = {'token': 'YOURTOKENHERE9139139f3a23232',
 'reset': True,
 'verbose': True,
 'publish': True}
options = {}
chef.run(args, options)

Logged in with username you@yourdomain.org
Ricecooker v0.6.19 is up-to-date.
Running get_channel...
run_id: 682e56ae42c246eb8c307bae35122e9e

* Starting channel build process *

Calling construct_channel...

Found subtitle_languages = dict_keys(['en', 'fr', 'zu'])

 Setting up initial channel structure...
 Validating channel structure...
 Youtube subtitles downloading chef (ChannelNode): 1 descendant
 Youtube video (VideoNode): 4 files
 Tree is valid

Downloading files...
Processing content...
 --- Downloaded (YouTube) 987257c13adb6d2f2c86849be6031a4c.mp4
 --- Downloaded subtitle f589321457f81efd035bb72cb57a1b3b.vtt
 --- Downloaded subtitle 99d24a5240d64e505a6343f50f851d2e.vtt
 --- Downloaded subtitle a1477da82f45e776b7f889b67358e761.vtt
 --- Extracted thumbnail 2646f5028c7925c0d304c709d39cf5b0.png
 --- Downloaded de498249b8d4395a4ef9db17ec02dc91.png
 All files were successfully downloaded
Getting file diff...

Checking if files exist on Kolibri Studio...
 Got file diff for 6 out of 6 files
Uploading files...

Uploading 0 new file(s) to Kolibri Studio...

ricecooker exercises

This mini-tutorial will walk you through the steps of running a simple
chef script ExercisesChef that creates two exercises nodes, and four
exercises questions.

We’ll go over the same steps as described in the Exercises section of
the page nodes, but this time showing the expected
output of each step.

Running the notebooks

To follow along and run the code in this notebook, you’ll need to clone
the ricecooker repository, crate a virtual environement, install
ricecooker using pip install ricecooker, install Jypyter
notebook using pip install jupyter, then start the jupyter notebook
server by running jupyter notebook. You will then be able to run all
the code sections in this notebook and poke around.

Creating a Sushi Chef class

from ricecooker.chefs import SushiChef
from ricecooker.classes.nodes import TopicNode, ExerciseNode
from ricecooker.classes.questions import SingleSelectQuestion, MultipleSelectQuestion, InputQuestion, PerseusQuestion
from ricecooker.classes.licenses import get_license
from le_utils.constants import licenses
from le_utils.constants import exercises
from le_utils.constants.languages import getlang

class SimpleChef(SushiChef):
 channel_info = {
 'CHANNEL_TITLE': 'Sample Exercises',
 'CHANNEL_SOURCE_DOMAIN': '<yourdomain.org>', # where you got the content
 'CHANNEL_SOURCE_ID': '<unique id for channel>', # channel's unique id
 'CHANNEL_LANGUAGE': 'en', # le_utils language code
 'CHANNEL_DESCRIPTION': 'A test channel with different types of exercise questions', # (optional)
 'CHANNEL_THUMBNAIL': None, # (optional)
 }

 def construct_channel(self, **kwargs):
 channel = self.get_channel(**kwargs)
 topic = TopicNode(title="Math Exercises", source_id="folder-id")
 channel.add_child(topic)

 exercise_node = ExerciseNode(
 source_id='<some unique id>',
 title='Basic questions',
 author='LE content team',
 description='Showcase of the simple question type supported by Ricecooker and Studio',
 language=getlang('en').code,
 license=get_license(licenses.PUBLIC_DOMAIN),
 thumbnail=None,
 exercise_data={
 'mastery_model': exercises.M_OF_N, # \
 'm': 2, # learners must get 2/3 questions correct to complete exercise
 'n': 3, # /
 'randomize': True, # show questions in random order
 },
 questions=[
 MultipleSelectQuestion(
 id='sampleEX_Q1',
 question = "Which numbers the following numbers are even?",
 correct_answers = ["2", "4",],
 all_answers = ["1", "2", "3", "4", "5"],
 hints=['Even numbers are divisible by 2.'],
),
 SingleSelectQuestion(
 id='sampleEX_Q2',
 question = "What is 2 times 3?",
 correct_answer = "6",
 all_answers = ["2", "3", "5", "6"],
 hints=['Multiplication of a by b is like computing the area of a rectangle with length a and width b.'],
),
 InputQuestion(
 id='sampleEX_Q3',
 question = "Name one of the *factors* of 10.",
 answers = ["1", "2", "5", "10"],
 hints=['The factors of a number are the divisors of the number that leave a whole remainder.'],
)
]
)
 topic.add_child(exercise_node)

 # LOAD JSON DATA (as string) FOR PERSEUS QUESTIONS
 RAW_PERSEUS_JSON_STR = open('../../examples/data/perseus_graph_question.json', 'r').read()
 # or
 # import requests
 # RAW_PERSEUS_JSON_STR = requests.get('https://raw.githubusercontent.com/learningequality/sample-channels/master/contentnodes/exercise/perseus_graph_question.json').text
 exercise_node2 = ExerciseNode(
 source_id='<another unique id>',
 title='An exercise containing a perseus question',
 author='LE content team',
 description='An example exercise with a Persus question',
 language=getlang('en').code,
 license=get_license(licenses.CC_BY, copyright_holder='Copyright holder name'),
 thumbnail=None,
 exercise_data={
 'mastery_model': exercises.M_OF_N,
 'm': 1,
 'n': 1,
 },
 questions=[
 PerseusQuestion(
 id='ex2bQ4',
 raw_data=RAW_PERSEUS_JSON_STR,
 source_url='https://github.com/learningequality/sample-channels/blob/master/contentnodes/exercise/perseus_graph_question.json'
),
]
)
 topic.add_child(exercise_node2)

 return channel

Note: make sure you change the values of CHANNEL_SOURCE_DOMAIN
and CHANNEL_SOURCE_ID before you try running this script. The
combination of these two values is used to compute the channel_id
for the Kolibri channel you’re creating. If you keep the lines above
unchanged, you’ll get an error because the channel with source domain
‘gov.mb.ca’ and source id ‘website_docs’ already exists on Kolibri
Studio.

Run of you chef by creating an instance of the chef class and calling
it’s run method:

mychef = SimpleChef()
args = {'token': '70aec3d11849e6691a8806d17f05b18bc5ca5ed4',
 'reset': True,
 'verbose': True,
 'publish': True,
 'nomonitor': True}
options = {}
mychef.run(args, options)

Logged in with username ivan.savov@gmail.com
Ricecooker v0.6.15 is up-to-date.
Running get_channel...

* Starting channel build process *

Calling construct_channel...
 Setting up initial channel structure...
 Validating channel structure...
 Sample Exercises (ChannelNode): 3 descendants
 Math Exercises (TopicNode): 2 descendants
 Basic questions (ExerciseNode): 3 questions
 An exercise containing a perseus question (ExerciseNode): 1 question
 Tree is valid

Downloading files...
Processing content...
 * Processing images for exercise: Basic questions
 * Images for Basic questions have been processed
 * Processing images for exercise: An exercise containing a perseus question
 * Images for An exercise containing a perseus question have been processed
 All files were successfully downloaded
Getting file diff...

Checking if files exist on Kolibri Studio...
Uploading files...

Uploading 0 new file(s) to Kolibri Studio...
Creating channel...

Creating tree on Kolibri Studio...
 Creating channel Sample Exercises
 Preparing fields...
(0 of 3 uploaded) Processing Sample Exercises (ChannelNode)
(1 of 3 uploaded) Processing Math Exercises (TopicNode)
 All nodes were created successfully.
Upload time: 36.425115s
Publishing channel...

Publishing tree to Kolibri...

DONE: Channel created at https://contentworkshop.learningequality.org/channels/47147660ecb850bfb71590bf7d1ca971/edit

Congratulations, you put some math exercises on the internet!

Kolibri content platform

Educational content in the Kolibri platform is organized into content channels.
The ricecooker library is used for creating content channels and uploading them
to Kolibri Studio [https://studio.learningequality.org/], which is the central
content server that Kolibri [http://learningequality.org/kolibri/] applications
talk to when importing their content.

The Kolibri content pipeline is pictured below:

[image: ../_images/content_pipeline_diagram.png]The Kolibri Content Pipeline

This ricecooker framework is the “main actor” in the first part of the content
pipeline, and touches all aspects of the pipeline within the region highlighted
in blue in the above diagram.

Supported Content types

Kolibri channels are tree-like data structures that consist of the following types
of nodes:

	Topic nodes (folders)

	Content types:

	Document (ePub and PDF files)

	Audio (mp3 files)

	Video (mp4 files)

	HTML5App zip files (generic container for web content: HTML+JS+CSS)

	Exercises, which contain different types of questions:

	SingleSelectQuestion (multiple choice)

	MultipleSelectQuestion (multiple choice with multiple correct answers)

	InputQuestion (good for numeric inputs)

	PerseusQuestion (a rich exercise question format developed at Khan Academy)

You can learn more about the content types supported by the Kolibri ecosystem
here.

Content import workflows

The following options are available for importing content into Kolibri Studio.

Kolibri Studio web interface

You can use the Kolibri Studio [https://studio.learningequality.org/] web interface
to upload various content types and organize them into channels. Kolibri Studio
allows you to explore pre-organized libraries of open educational resources,
and reuse them in your channels. You can also add tags, re-order, re-mix content,
and create exercises to support student’s learning process.

To learn more about Studio, we recommend reading the following pages in the
Kolibri Studio User Guide [http://kolibri-studio.readthedocs.io/en/latest/]:

	Accessing Studio [http://kolibri-studio.readthedocs.io/en/latest/access_studio.html]

	Working with channels [http://kolibri-studio.readthedocs.io/en/latest/working_channels.html]

	Adding content to channels [http://kolibri-studio.readthedocs.io/en/latest/add_content.html]

When creating large channels (50+ content items) or channels that need will be
updated regularly, you should consider using one of the bulk-import options below.

Bulk-importing content programatically

The ricecooker [https://github.com/learningequality/ricecooker] library is a
tool that programmers can use to upload content to Kolibri Studio in an automated
fashion. We refer to these import scripts as sushi chefs, because their job
is to chop-up the source material (e.g. an educational website) and package the
content items into tasty morsels (content items) with all the associated metadata.

Using the bulk import option requires the a content developer (sushi chef author)
to prepare the content, content metadata, and run the chef script to perform the
upload to Kolibri Studio.

Educators and content specialists can assist the developers by preparing a spec sheet
for the content source (usually a shared google doc), which provides detailed
instructions for how content should be structured and organized within the channel.

Consult this document [https://docs.google.com/document/d/1slwoNT90Wqu0Rr8MJMAEsA-9LWLRvSeOgdg9u7HrZB8/edit?usp=sharing]
for more info about writing spec sheets.

CSV metadata workflow

In addition to the web interface and the Python interface (ricecooker), there
exists a third option for creating Kolibri channels by:

	Organizing content items (documents, videos, mp3 files) into a folder hierarchy
on the local file system

	Specifying metadata in the form of CSV files

The CSV-based workflow is a good fit for non-technical users since it doesn’t
require writing any code, but instead can use Excel to provide all the metadata.

	CSV-based workflow README [https://github.com/learningequality/sample-channels/tree/master/channels/csv_channel]

	Example content folder [https://github.com/learningequality/sample-channels/tree/master/channels/csv_exercises/content]

	Example Channel.csv metadata file [https://github.com/learningequality/sample-channels/blob/master/channels/csv_channel/content/Channel.csv]

	Example Content.csv metadata file [https://github.com/learningequality/sample-channels/blob/master/channels/csv_channel/content/Content.csv]

	CSV-based exercises info [https://github.com/learningequality/sample-channels/tree/master/channels/csv_exercises]

Organizing the content into folders and creating the CSV metadata files is most
of the work, and can be done by non-programmers.
The generic sushi chef script (LineCook) is then used to upload the channel.

Further reading

	Kolibri Studio User Guide [http://kolibri-studio.readthedocs.io/en/latest/index.html]

	Sample channels [https://github.com/learningequality/sample-channels]

Supported content types

Audio

The AudioNode and AudioFile are used to store mp3 files.

Videos

The VideoNode and VideoFile are used to store videos.

Documents

The DocumentNode class supports two type of files:

	Use the DocumentFile for .pdf documents

	Use the EPubFile for .epub files

HTML5Apps

The most versatile and extensible option for importing content into Kolibri is to
package the content as HTML5App nodes. The HTML5 content type on Kolibri, consists
of a zip file with web content inside it. The Kolibri application serves the file
index.html from the root of the zip folder inside an iframe. It is possible to
package any web content in this manner: text, images, CSS, fonts, and JavaScript code.
The iframe rendering the content in Kolibri is sandbox so no plugins are allowed (no swf/flash).
In addition, it is expected that oh web resources are stored within the zip file,
and referenced using relative paths. This is what enables Kolibri to used in offline settings.

Here are some samples:

	Sample Vue.js App [https://github.com/learningequality/sample-channels/tree/master/contentnodes/html5_vuejs]:
Proof of concept of minimal webapp based on the vue.js framework.
Note the shell script [https://github.com/learningequality/sample-channels/blob/master/contentnodes/html5_vuejs/update.sh#L22]
tweaks the output to make references relative paths.

	Sample React App [https://github.com/learningequality/sample-channels/tree/master/contentnodes/html5_react]:
Proof of concept of minimal webapp based on the React framework.
Note the shell script [https://github.com/learningequality/sample-channels/blob/master/contentnodes/html5_react/update.sh#L24]
tweaks required to make paths relative.

Exercises

Kolibri exercises are based on the perseus exercise framework developed by Khan Academy.
Perseus provides a free-form interface for questions based on various “widgets” buttons,
draggables, expressions, etc. This is the native format for exercises on Kolibri.
An exercise question item is represented as a giant json file, with the main question
field stored as Markdown. Widgets are included in the “main” through a unique-Unicode
character and then widget metadata is stored separately as part of the json data.

Exercises can be created programmatically or interactively using the perseus editor through the web: http://khan.github.io/perseus/
(try adding different widgets in the Question area and then click the JSON Mode
checkbox to “view source” for the exercise.

You can then copy-paste the results as a .json file and import into Kolibri using ricecooker library (Python).

Sample: https://github.com/learningequality/sample-channels/blob/master/contentnodes/exercise/sample_perseus04.json

Kolibri Studio provides helper classes for creating single/multiple-select questions, and numeric input questions:
https://github.com/learningequality/ricecooker/blob/master/docs/exercises.md

A simple multiple choice (single select) question can be created as follows:

SingleSelectQuestion(
 question = "What was the main idea in the passage you just read?",
 correct_answer = "The right answer",
 all_answers = ["The right answer", "Another option", "Nope, not this"]
 ...

Exercise activities allow student answers to be logged and enable progress reports
for teachers and coaches. Exercises can also be used as part of individual assignments
(playlist-like thing with a mix of content and exercises), group assignments, and exams.

Extending Kolibri

New content types and presentation modalities will become available and supported
natively by future versions of Kolibri. The Kolibri software architecture is based
around the plug-in system that is easy to extend. All currently supported content
type renderers are based on this plug-in architecture. It might be possible to create
a Kolibri plugin for rendering specific content in custom ways.

Using the ricecooker library

The ricecooker library is used to transform various educational content types
into Kolibri-compatible formats and upload content to Kolibri Studio.
The following steps will guide you through the creation of a sushi chef script
that uses all the features of the ricecooker library.

Step 1: Obtain a Studio Authorization Token

You will need a Studio Authorization Token to create a channel on Kolibri Studio.
In order to obtain such a token:

	Create an account on Kolibri Studio [https://studio.learningequality.org/].

	Navigate to the Tokens tab under your Settings page.

	Copy the given authorization token to a safe place.

You must pass the token on the command line as --token=<your-auth-token> when
calling your chef script. Alternatively, you can create a file to store your token
and pass in the command line argument --token="path/to/file.txt".

Step 2: Create a Sushi Chef script

We’ll use following simple chef script as an the running example in this section.
You can copy-paste this code into a file mychef.py and use it as a starting point
for the chef script you’re working on.

#!/usr/bin/env python
from ricecooker.chefs import SushiChef
from ricecooker.classes.nodes import TopicNode, DocumentNode
from ricecooker.classes.files import DocumentFile
from ricecooker.classes.licenses import get_license

class SimpleChef(SushiChef): # (1)
 channel_info = { # (2)
 'CHANNEL_TITLE': 'Potatoes info channel',
 'CHANNEL_SOURCE_DOMAIN': 'gov.mb.ca', # change me!!!
 'CHANNEL_SOURCE_ID': 'website_docs', # change me!!!
 'CHANNEL_LANGUAGE': 'en',
 'CHANNEL_THUMBNAIL': 'https://upload.wikimedia.org/wikipedia/commons/b/b7/A_Grande_Batata.jpg',
 'CHANNEL_DESCRIPTION': 'A channel about potatoes.',
 }

 def construct_channel(self, **kwargs):
 channel = self.get_channel(**kwargs) # (3)
 potato_topic = TopicNode(title="Potatoes!", source_id="les_patates") # (4)
 channel.add_child(potato_topic) # (5)
 doc_node = DocumentNode(# (6)
 title='Growing potatoes',
 description='An article about growing potatoes on your rooftop.',
 source_id='inr/pdf/pubs/mafri-potatoe.pdf',
 author=None,
 language='en', # (7)
 license=get_license('CC BY', copyright_holder='U. of Alberta'), # (8)
 files=[
 DocumentFile(# (9)
 path='https://www.gov.mb.ca/inr/pdf/pubs/mafri-potatoe.pdf', # (10)
 language='en', # (11)
)
],
)
 potato_topic.add_child(doc_node)
 return channel

if __name__ == '__main__': # (12)
 """
 Run this script on the command line using:
 python simple_chef.py -v --reset --token=YOURTOKENHERE9139139f3a23232
 """
 simple_chef = SimpleChef()
 simple_chef.main() # (13)

Ricecooker Chef API

To use the ricecooker library, you create a sushi chef scripts that define
a subclass of the base class ricecooker.chefs.SushiChef, as shown at (1) in the code.
By extending SushiChef, your chef class will inherit the following methods:

	run, which performs all the work of uploading your channel to the Kolibri Studio.
A sushi chef run consists of multiple steps, the most important one being
when the we call the chef class’ construct_channel method.

	main, which your is the function that runs when the sushi chef script is
called on the command line.

Chef class attributes

A chef class should have the attribute channel_info (dict), which contains the
metadata for the channel, as shows on line (2). Define the channel_info as follows:

channel_info = {
 'CHANNEL_TITLE': 'Channel name shown in UI',
 'CHANNEL_SOURCE_DOMAIN': '<sourcedomain.org>', # who is providing the content (e.g. learningequality.org)
 'CHANNEL_SOURCE_ID': '<some unique identifier>', # an unique identifier for this channel within the domain
 'CHANNEL_LANGUAGE': 'en', # use language codes from le_utils
 'CHANNEL_THUMBNAIL': 'http://yourdomain.org/img/logo.jpg', # (optional) local path or url to a thumbnail image
 'CHANNEL_DESCRIPTION': 'What is this channel about?', # (optional) longer description of the channel
}

Note: make sure you change the values of CHANNEL_SOURCE_DOMAIN and CHANNEL_SOURCE_ID
before you try running this script. The combination of these two values is used
to compute the channel_id for the Kolibri channel you’re creating. If you keep
the lines above unchanged, you’ll get an error because the channel with source
domain ‘gov.mb.ca’ and source id ‘website_docs’ already exists on Kolibri Studio.

Construct channel

The code responsible for building the structure of the channel your channel by
adding TopicNodes, ContentNodess, files, and exercises questions lives here.
This is where most of the work of writing a chef script happens.

You chef class should have a method with the signature:

def construct_channel(self, **kwargs) -> ChannelNode:
 ...

To write the construct_channel method of your chef class, start by getting the
ChannelNode for this channel by calling self.get_channel(**kwargs).
An instance of the ChannelNode will be constructed for you, from the metadata
provided in self.channel_info. Once you have the ChannelNode instance, the
rest of your chef’s construct_channel method is responsible for constructing
the channel by adding various Nodes objects to the channel using add_child.

Topic nodes

Topic nodes are folder-like containers that are used to organize the channel’s content.
Line (4) shows how to create a TopicNode (folder) instance titled “Potatoes!”.
Line (5) shows how to add the newly created topic node to the channel.

Content nodes

The ricecooker library provides classes like DocumentNode, VideoNode,
AudioNode, etc., to store the metadata associate with media content items.
Each content node also has one or more files associated with it,
EPubFile, DocumentFile, VideoFile, AudioFile, ThumbnailFile, etc.

Line (6) shows how to create a DocumentNode to store the metadata for a pdf file.
The title and description attributes are set. We also set the source_id
attribute to a unique identifier for this document on the source domain gov.mb.ca.
The document does not specify authors, so we set the author attribute to None.

On (7), we set language attribute to the internal language code en, to indicate
the content node is in English. We use the same language code later on line (11)
to indicate the file contents are in English. The Python package le-utils defines
the internal language codes used throughout the Kolibri platform (e.g. en, es-MX, and zul).
To find the internal language code for a given language, you can locate it in the
lookup table [https://github.com/learningequality/le-utils/blob/master/le_utils/resources/languagelookup.json],
or use one of the language lookup helper functions defined in le_utils.constants.languages.

Line (8) shows how we set the license attribute to the appropriate instance of
ricecooker.classes.licenses.License. All non-topic nodes must be assigned a
license upon initialization. You can obtain the appropriate license object using
the helper function get_license defined in ricecooker.classes.licenses.
Use the predefined license ids given in le_utils.constants.licenses as the
first argument to the get_license helper function.

Files

On lines (9, 10, and 11), we create a DocumentFile instance and set the appropriate
path and language attributes. Note that path can be a web URL as in the above example,
or a local filesystem path.

Command line interface

You can run your chef script by passing the appropriate command line arguments:

python mychef.py -v --reset --token=YOURTOKENHERE9139139f3a23232

The most important argument when running a chef script is --token which is used
to pass in the Studio Access Token obtained in Step 1.

The flags -v (verbose) and --reset are generally useful in development.
These make sure the chef script will start the process from scratch and displays
useful debugging information on the command line.

To see the full list of ricecooker command line options, run ./mychef.py -h.
For more details about running chef scripts see the chefops page.

If you get an error when running the chef, make sure you’ve replaced
YOURTOKENHERE9139139f3a23232 by the token you obtained from Studio.
Also make sure you’ve changed the value of channel_info['CHANNEL_SOURCE_DOMAIN']
and channel_info['CHANNEL_SOURCE_ID'] instead of using the default values.

If the channel run was successful, you should be able to see your single-topic
channel on Kolibri Studio server. The topic node “Potatoes!” is nice to look at,
but it feels kind of empty. Let’s add more nodes to it!

Step 3: Add more content nodes and files

Once your channel is created, you can start adding nodes. To do this, you need
to convert your data to ricecooker objects. Here are the classes that are
available to you (import from ricecooker.classes.nodes):

	TopicNode: folders to organize to the channel’s content

	AudioNode: content containing mp3 file

	DocumentNode: content containing pdf and epub files

	HTML5AppNode: content containing zip of html files (html, js, css, etc.)

	VideoNode: content containing mp4 file

	ExerciseNode: assessment-based content with questions

Once you have created the node, add it to a parent node with parent_node.add_child(child_node)

To read more about the different nodes, read the nodes page.

To add a file to your node, you must start by creating a file object from ricecooker.classes.files.
Your sushi chef is responsible for determining which file object to create.
Here are the available file models:

	AudioFile: mp3 file

	DocumentFile: pdf file

	EPubFile: epub file

	HTMLZipFile: zip of html files (must have index.html file at topmost level)

	VideoFile: mp4 file (can be high resolution or low resolution)

	WebVideoFile: video downloaded from site such as YouTube or Vimeo

	YouTubeVideoFile: video downloaded from YouTube using a youtube video id

	SubtitleFile: .vtt subtitle files to be used with VideoFiles

	YouTubeSubtitleFile: subtitles downloaded based on youtube video id and language code

	ThumbnailFile: png or jpg thumbnail files to add to any kind of node

Each file class can be passed a preset and language at initialization
(SubtitleFiles must have a language set at initialization).
A preset determines what kind of file the object is (e.g. high resolution video vs. low resolution video).
A list of available presets can be found at le_utils.constants.format_presets.

ThumbnailFiles, AudioFiles, DocumentFiles, HTMLZipFiles, VideoFiles, and SubtitleFiles
must be initialized with a path (str). This path can be a url or a local path to a file.

To read more about the different nodes, read the nodes files.

Step 4: Adding exercises

See the exercises page.

Nodes

Kolibri channels are tree-like structures that consist of different types of topic
nodes (folders) and various content nodes (document, audio, video, html, exercise).
The module ricecooker.classes.nodes defines helper classes to represent each of
these supported content types and provide validation logic to check channel content
is valid before uploading it to Kolibri Studio.

The purpose of the Node classes is to represent the channel tree structure and
store metadata necessary for each type of content item, while the actual content
data is stored in file objects (defined in ricecooker.classes.files) and exercise
questions object (defined in ricecooker.classes.questions) which are created separately.

Overview

The following diagram lists all the node classes defined in ricecooker.classes.nodes
and shows the associated file and question classes that content nodes can contain.

 ricecooker.classes.nodes
 |
 | ricecooker.classes.files
class Node(object) |
 class ChannelNode(Node) |
 class TreeNode(Node) |
 class TopicNode(TreeNode) |
 class ContentNode(TreeNode) |
 class AudioNode(ContentNode) files = [AudioFile]
 class DocumentNode(ContentNode) files = [DocumentFile, EPubFile]
 class HTML5AppNode(ContentNode) files = [HTMLZipFile]
 class VideoNode(ContentNode) files = [VideoFile, WebVideoFile, YouTubeVideoFile,
 SubtitleFile, YouTubeSubtitleFile]
 class ExerciseNode(ContentNode) questions = [SingleSelectQuestion,
 MultipleSelectQuestion,
 InputQuestion,
 PerseusQuestion]
 |
 |
 ricecooker.classes.questions

In the remainder of this document we’ll describe in full detail the metadata that
is needed to specify different content nodes.

For more info about file objects see page files and to learn about
the different exercise questions see the page exercises.

Content node metadata

Each node has the following attributes:

	source_id (str): content’s original id

	title (str): content’s title

	license (str or License): content’s license id or object

	language (str or lang_obj): language for the content node

	description (str): description of content (optional)

	author (str): who created the content (optional)

	aggregator (str): website or org hosting the content collection but not necessarily the creator or copyright holder (optional)

	provider (str): organization that commissioned or is distributing the content (optional)

	role (str): set to roles.COACH for teacher-facing materials (default roles.LEARNER)

	thumbnail (str or ThumbnailFile): path to thumbnail or file object (optional)

	files ([FileObject]): list of file objects for node (optional)

	extra_fields (dict): any additional data needed for node (optional)

	domain_ns (uuid): who is providing the content (e.g. learningequality.org) (optional)

IMPORTANT: nodes representing distinct pieces of content MUST have distinct source_ids.
Each node has a content_id (computed as a function of the source_domain and
the node’s source_id) that uniquely identifies a piece of content within Kolibri
for progress tracking purposes. For example, if the same video occurs in multiple
places in the tree, you would use the same source_id for those nodes – but
content nodes that aren’t for that video need to have different source_ids.

Usability guidelines

	Thumbnails: 16:9 aspect ratio ideally (e.g. 420x236 pixels)

	Titles: Aim for titles that make content items reusable independently of their containing folder, since curators could copy content items to other topics or channels. e.g. title for pdf doc “{lesson_name} - instructions.pdf” is better than just “Instructions.pdf” since that PDF could show up somewhere else.

	Descriptions: aim for about 400 characters (about 3-4 sentences)

	Licenses: Any non-public domain license must have a copyright holder, and any special permissions licenses must have a license description.

Licenses

All content nodes within Kolibri and Kolibri Studio must have a license. The file
le_utils/constants/licenses.py [https://github.com/learningequality/le-utils/blob/master/le_utils/constants/licenses.py]
contains the constants used to identify the license types. These constants are meant
to be used in conjunction with the helper method ricecooker.classes.licenses.get_license
to create Licence objects.

To initialize a license object, you must specify the license type and the
copyright_holder (str) which identifies a person or an organization. For example:

from ricecooker.classes.licenses import get_license
from le_utils.constants import licenses

license_obj = get_license(licenses.CC_BY, copyright_holder="Khan Academy")

Note: The copyright_holder field is required for all License types except for
the public domain license for which copyright_holder can be None. Everyone owns
the stuff in the public domain.

Languages

The Python package le-utils defines the internal language codes used throughout
the Kolibri platform (e.g. en, es-MX, and zul). To find the internal language
code for a given language, you can locate it in the lookup table [https://github.com/learningequality/le-utils/blob/master/le_utils/resources/languagelookup.json],
or use one of the language lookup helper functions defined in le_utils.constants.languages:

	getlang(<code>) --> lang_obj: basic lookup used to ensure <code> is a valid
internal language code (otherwise returns None).

	getlang_by_name(<Language name in English>) --> lang_obj: lookup by name, e.g. French

	getlang_by_native_name(<Language autonym>) --> lang_obj: lookup by native name, e.g., français

	getlang_by_alpha2(<two-letter ISO 639-1 code>) --> lang_obj: lookup by standard two-letter code, e.g fr

You can either pass lang_obj as the language attribute when creating nodes,
or pass the internal language code (str) obtained from the property lang_obj.code:

from le_utils.constants.languages import getlang_by_native_name

lang_obj = getlang_by_native_name('français')
print(lang_obj # Language(native_name='Français', primary_code='fr', subcode=None, name='French')
print(lang_obj.code) # fr

See [languages][./languages.md] to read more about language codes.

Thumbnails

Thumbnails can be passed in as a local filesystem path to an image file (str) or
a ThumbnailFile object.
The recommended size for thumbnail images is 420px by 236px (aspect ratio 16:9).

Topic nodes

Topic nodes are folder-like containers that are used to organize the channel’s content.

from ricecooker.classes import TopicNode
from le_utils.constants.languages import getlang

topic_node = TopicNode(
 title='The folder name',
 description='A longer description of what the folder contains',
 source_id='<some unique identifier for this folder>',
 language='en',
 thumbnail=None,
 author='',
)

It is highly recommended to find suitable thumbnail images for topic nodes. The
presence of thumbnails will make the content more appealing and easier to browse.
The --thumbnails command line argument can be used to generate thumbnails for
topic nodes based on the thumbnails of the content nodes they contain.

Content nodes

The table summarizes summarizes the content node classes, their associated files,
and the file formats supported by each file class:

 ricecooker.classes.nodes ricecooker.classes.files
 | |
 AudioNode --files--> AudioFile # .mp3
 DocumentNode --files--> DocumentFile # .pdf
 EPubFile # .epub
 HTML5AppNode --files--> HTMLZipFile # .zip
 VideoNode --files--> VideoFile, WebVideoFile, YouTubeVideoFile, # .mp4
 SubtitleFile, YouTubeSubtitleFile # .vtt

For your copy-paste convenience, here is the sample code for creating a content
node (DocumentNode) and an associated (DocumentFile)

content_node = DocumentNode(
 source_id='<some unique identifier within source domain>',
 title='Some Document',
 author='First Last (author\'s name)',
 description='Put file description here',
 language=getlang('en').code,
 license=get_license(licenses.CC_BY, copyright_holder='Copyright holder name'),
 thumbnail='some/local/path/name_thumb.jpg',
 files=[DocumentFile(
 path='some/local/path/name.pdf',
 language=getlang('en').code
)]
)

Files can be passed in upon initialization as in the above sample, or can be
added after initialization using the content_node’s add_files method.

Note you also use URLs for path and thumbnail instead of local filesystem paths,
and the files will be downloaded for you automatically.

You can replace DocumentNode and DocumentFile with any of the other
combinations of content node and file types.
VideoNodes also have a derive_thumbnail (boolean) argument, which will automatically
extract a thumbnail from the video if no thumbnail is provided.

Role-based visibility

It is possible to include content nodes in any channel that are only visible to
Kolibri coaches. Setting the visibility to “coach-only” is useful for pedagogical
guides, answer keys, lesson plan suggestions, and other supporting material
intended only for teachers to see but not students.
To control content visibility set the role attributes to one of the constants
defined in le_utils.constants.roles to define the “minimum role” needed to see the content.

	if role=roles.LEARNER: visible to learners, coaches, and administrators

	if role=roles.COACH: visible only to Kolibri coaches and administrators

Exercise nodes

The ExerciseNode class (also subclasses of ContentNode), act as containers for
various assessment questions types defined in ricecooker.classes.questions.
The question types currently supported are:

	SingleSelectQuestion: questions that only have one right answer (e.g. radio button questions)

	MultipleSelectQuestion: questions that have multiple correct answers (e.g. check all that apply)

	InputQuestion: questions that have as answers simple text or numeric expressions (e.g. fill in the blank)

	PerseusQuestion: perseus json question (used in Khan Academy chef)

The following code snippet creates an exercise node that contains the three simple
question types:

exercise_node = ExerciseNode(
 source_id='<some unique id>',
 title='Basic questions',
 author='LE content team',
 description='Showcase of the simple question type supported by Ricecooker and Studio',
 language=getlang('en').code,
 license=get_license(licenses.PUBLIC_DOMAIN),
 thumbnail=None,
 exercise_data={
 'mastery_model': exercises.M_OF_N, # \
 'm': 2, # learners must get 2/3 questions correct to complete exercise
 'n': 3, # /
 'randomize': True, # show questions in random order
 },
 questions=[
 MultipleSelectQuestion(
 id='sampleEX_Q1',
 question = "Which numbers the following numbers are even?",
 correct_answers = ["2", "4",],
 all_answers = ["1", "2", "3", "4", "5"],
 hints=['Even numbers are divisible by 2.'],
),
 SingleSelectQuestion(
 id='sampleEX_Q2',
 question = "What is 2 times 3?",
 correct_answer = "6",
 all_answers = ["2", "3", "5", "6"],
 hints=['Multiplication of a by b is like computing the area of a rectangle with length a and width b.'],
),
 InputQuestion(
 id='sampleEX_Q3',
 question = "Name one of the *factors* of 10.",
 answers = ["1", "2", "5", "10"],
 hints=['The factors of a number are the divisors of the number that leave a whole remainder.'],
)
]
)

Creating a PerseusQuestion requires first obtaining the perseus-format .json
file for the question. You can questions using the web interface [http://khan.github.io/perseus/].
Click here [https://github.com/learningequality/ricecooker/tree/master/examples/data]
to see a samples of questions in the perseus json format.

To following code creates an exercise node with a single perseus question in it:

LOAD JSON DATA (as string) FOR PERSEUS QUESTIONS
RAW_PERSEUS_JSON_STR = open('ricecooker/examples/data/perseus_graph_question.json', 'r').read()
or
import requests
RAW_PERSEUS_JSON_STR = requests.get('https://github.com/learningequality/sample-channels/blob/master/contentnodes/exercise/perseus_graph_question.json').text
exercise_node2 = ExerciseNode(
 source_id='<another unique id>',
 title='An exercise containing a perseus question',
 author='LE content team',
 description='An example exercise with a Persus question',
 language=getlang('en').code,
 license=get_license(licenses.CC_BY, copyright_holder='Copyright holder name'),
 thumbnail=None,
 exercise_data={
 'mastery_model': exercises.M_OF_N,
 'm': 1,
 'n': 1,
 },
 questions=[
 PerseusQuestion(
 id='ex2bQ4',
 raw_data=RAW_PERSEUS_JSON_STR,
 source_url='https://github.com/learningequality/sample-channels/blob/master/contentnodes/exercise/perseus_graph_question.json'
),
]
)

The example above uses the JSON from this question [http://khan.github.io/perseus/#content=%7B%22question%22%3A%7B%22content%22%3A%22Move%20the%20points%20in%20the%20figure%20below%20to%20obtain%20the%20graph%20of%20the%20line%20with%20equation%20%24y%3D%5C%5Cfrac%7B3%7D%7B2%7Dx-3%24.%5Cn%5Cn%5B%5B%E2%98%83%20interactive-graph%202%5D%5D%5Cn%22%2C%22images%22%3A%7B%7D%2C%22widgets%22%3A%7B%22interactive-graph%202%22%3A%7B%22type%22%3A%22interactive-graph%22%2C%22alignment%22%3A%22default%22%2C%22static%22%3Afalse%2C%22graded%22%3Atrue%2C%22options%22%3A%7B%22step%22%3A%5B1%2C1%5D%2C%22backgroundImage%22%3A%7B%22url%22%3Anull%7D%2C%22markings%22%3A%22graph%22%2C%22labels%22%3A%5B%22x%22%2C%22y%22%5D%2C%22showProtractor%22%3Afalse%2C%22showRuler%22%3Afalse%2C%22showTooltips%22%3Afalse%2C%22rulerLabel%22%3A%22%22%2C%22rulerTicks%22%3A10%2C%22range%22%3A%5B%5B-5%2C5%5D%2C%5B-5%2C5%5D%5D%2C%22gridStep%22%3A%5B0.5%2C0.5%5D%2C%22snapStep%22%3A%5B0.25%2C0.25%5D%2C%22graph%22%3A%7B%22type%22%3A%22linear%22%7D%2C%22correct%22%3A%7B%22type%22%3A%22linear%22%2C%22coords%22%3A%5B%5B0%2C-3%5D%2C%5B2%2C0%5D%5D%7D%7D%2C%22version%22%3A%7B%22major%22%3A0%2C%22minor%22%3A0%7D%7D%2C%22interactive-graph%201%22%3A%7B%22options%22%3A%7B%22labels%22%3A%5B%22x%22%2C%22y%22%5D%2C%22range%22%3A%5B%5B-10%2C10%5D%2C%5B-10%2C10%5D%5D%2C%22step%22%3A%5B1%2C1%5D%2C%22valid%22%3Atrue%2C%22backgroundImage%22%3A%7B%22url%22%3Anull%7D%2C%22markings%22%3A%22graph%22%2C%22showProtractor%22%3Afalse%2C%22showRuler%22%3Afalse%2C%22showTooltips%22%3Afalse%2C%22rulerLabel%22%3A%22%22%2C%22rulerTicks%22%3A10%2C%22correct%22%3A%7B%22type%22%3A%22linear%22%2C%22coords%22%3Anull%7D%7D%2C%22type%22%3A%22interactive-graph%22%2C%22version%22%3A%7B%22major%22%3A0%2C%22minor%22%3A0%7D%7D%2C%22expression%201%22%3A%7B%22options%22%3A%7B%22answerForms%22%3A%5B%7B%22value%22%3A%22y%3D%5C%5Cfrac%7B3%7D%7B2%7Dx-3%22%2C%22form%22%3Afalse%2C%22simplify%22%3Afalse%2C%22considered%22%3A%22correct%22%2C%22key%22%3A0%2C%22times%22%3Afalse%2C%22functions%22%3A%5B%22f%22%2C%22g%22%2C%22h%22%5D%2C%22buttonSets%22%3A%5B%22basic%22%2C%22basic%20relations%22%5D%2C%22buttonsVisible%22%3A%22focused%22%2C%22linterContext%22%3A%7B%22contentType%22%3A%22%22%2C%22highlightLint%22%3Afalse%2C%22paths%22%3A%5B%5D%2C%22stack%22%3A%5B%5D%7D%7D%2C%7B%22considered%22%3A%22correct%22%2C%22form%22%3Afalse%2C%22key%22%3A1%2C%22simplify%22%3Afalse%2C%22value%22%3A%22%5C%5Cfrac%7B3%7D%7B2%7Dx-3%22%2C%22times%22%3Afalse%2C%22functions%22%3A%5B%22f%22%2C%22g%22%2C%22h%22%5D%2C%22buttonSets%22%3A%5B%22basic%22%2C%22basic%20relations%22%5D%2C%22buttonsVisible%22%3A%22focused%22%2C%22linterContext%22%3A%7B%22contentType%22%3A%22%22%2C%22highlightLint%22%3Afalse%2C%22paths%22%3A%5B%5D%2C%22stack%22%3A%5B%5D%7D%7D%5D%2C%22buttonSets%22%3A%5B%22basic%22%2C%22basic%20relations%22%5D%2C%22functions%22%3A%5B%22f%22%2C%22g%22%2C%22h%22%5D%2C%22times%22%3Afalse%2C%22static%22%3Afalse%7D%2C%22type%22%3A%22expression%22%2C%22version%22%3A%7B%22major%22%3A1%2C%22minor%22%3A0%7D%2C%22graded%22%3Atrue%2C%22alignment%22%3A%22default%22%2C%22static%22%3Afalse%7D%7D%7D%2C%22answerArea%22%3A%7B%22calculator%22%3Afalse%2C%22chi2Table%22%3Afalse%2C%22periodicTable%22%3Afalse%2C%22tTable%22%3Afalse%2C%22zTable%22%3Afalse%7D%2C%22itemDataVersion%22%3A%7B%22major%22%3A0%2C%22minor%22%3A1%7D%2C%22hints%22%3A%5B%5D%7D],
for which you can also a rendered preview here [http://khan.github.io/perseus/?renderer#content=%7B%22question%22%3A%7B%22content%22%3A%22Move%20the%20points%20in%20the%20figure%20below%20to%20obtain%20the%20graph%20of%20the%20line%20with%20equation%20%24y%3D%5C%5Cfrac%7B3%7D%7B2%7Dx-3%24.%5Cn%5Cn%5B%5B%E2%98%83%20interactive-graph%202%5D%5D%5Cn%22%2C%22images%22%3A%7B%7D%2C%22widgets%22%3A%7B%22interactive-graph%202%22%3A%7B%22type%22%3A%22interactive-graph%22%2C%22alignment%22%3A%22default%22%2C%22static%22%3Afalse%2C%22graded%22%3Atrue%2C%22options%22%3A%7B%22step%22%3A%5B1%2C1%5D%2C%22backgroundImage%22%3A%7B%22url%22%3Anull%7D%2C%22markings%22%3A%22graph%22%2C%22labels%22%3A%5B%22x%22%2C%22y%22%5D%2C%22showProtractor%22%3Afalse%2C%22showRuler%22%3Afalse%2C%22showTooltips%22%3Afalse%2C%22rulerLabel%22%3A%22%22%2C%22rulerTicks%22%3A10%2C%22range%22%3A%5B%5B-5%2C5%5D%2C%5B-5%2C5%5D%5D%2C%22gridStep%22%3A%5B0.5%2C0.5%5D%2C%22snapStep%22%3A%5B0.25%2C0.25%5D%2C%22graph%22%3A%7B%22type%22%3A%22linear%22%7D%2C%22correct%22%3A%7B%22type%22%3A%22linear%22%2C%22coords%22%3A%5B%5B0%2C-3%5D%2C%5B2%2C0%5D%5D%7D%7D%2C%22version%22%3A%7B%22major%22%3A0%2C%22minor%22%3A0%7D%7D%7D%7D%2C%22answerArea%22%3A%7B%22calculator%22%3Afalse%2C%22chi2Table%22%3Afalse%2C%22periodicTable%22%3Afalse%2C%22tTable%22%3Afalse%2C%22zTable%22%3Afalse%7D%2C%22itemDataVersion%22%3A%7B%22major%22%3A0%2C%22minor%22%3A1%7D%2C%22hints%22%3A%5B%5D%7D].

Files

Each ricecooker content node is associated with one or more files stored in a
content-addressable file storage system. For example, to store the file sample.pdf
we first compute md5 hash of its contents (say abcdef00000000000000000000000000)
then store the file at the path storage/a/b/abcdef00000000000000000000000000.pdf.
The same storage mechanism is used on Kolibri Studio and Kolibri applications.

File objects

The following file classes are defined in the module ricecooker.classes.files:

AudioFile # .mp3
DocumentFile # .pdf
HTMLZipFile # .zip containing HTML,JS,CSS
VideoFile # .mp4 (`path` is local file system or url)
 WebVideoFile # .mp4 (downloaded from `web_url`)
 YouTubeVideoFile # .mp4 (downloaded from youtube based on `youtube_id`)
 SubtitleFile # .vtt (`path` is local file system or url)
 YouTubeSubtitleFile # .vtt (downloaded from youtube based on `youtube_id` and `language`)
ThumbnailFile # .png/.jpg/.jpeg (`path` is local file system or url)

Base classes

The file classes extent the base classes File(object) and DownloadFile(File).
When creating a file object, you must specify the following attributes:

	path (str): this can be either local path like dir/subdir/file.ext, or
a URL like ‘http://site.org/dir/file.ext’.

	language (str or le_utils language object): what is the language is the
file contents.

Path

The path attribute can be either a path on the local filesystem relative to the
current working directory of the chef script, or the URL of a web resource.

Language

The Python package le-utils defines the internal language codes used throughout
the Kolibri platform (e.g. en, es-MX, and zul). To find the internal language
code for a given language, you can locate it in the lookup table [https://github.com/learningequality/le-utils/blob/master/le_utils/resources/languagelookup.json],
or use one of the language lookup helper functions defined in le_utils.constants.languages:

	getlang(<code>) --> lang_obj: basic lookup used to ensure <code> is a valid
internal language code (otherwise returns None).

	getlang_by_name(<Language name in English>) --> lang_obj: lookup by name, e.g. French

	getlang_by_native_name(<Language autonym>) --> lang_obj: lookup by native name, e.g., français

	getlang_by_alpha2(<two-letter ISO 639-1 code>) --> lang_obj: lookup by standard two-letter code, e.g fr

You can either pass lang_obj as the language attribute when creating nodes and files,
or pass the internal language code (str) obtained from the property lang_obj.code.
See [languages][./languages.md] to read more about language codes.

Audio files

Use the AudioFile(DownloadFile) class to store mp3 files.

audio_file = AudioFile(
 path='dir/subdir/lecture_recording.mp3',
 language=getlang('en').code
)

Document files

Use the DocumentFile class to add PDF documents:

document_file = DocumentFile(
 path='dir/subdir/lecture_slides.mp4',
 language=getlang('en').code
)

Use the EPubFile class to add ePub documents:

document_file = EPubFile(
 path='dir/subdir/lecture_slides.epub',
 language=getlang('en').code
)

HTMLZip files

The HTML5ZipFile class is a generic zip container for web content like HTML, CSS,
and JavaScript. To be a valid HTML5ZipFile file, the file must have a index.html
in its root. The file index.html will be loaded within a sandboxed iframe when
this content item is accessed on Kolibri.

Chef authors are responsible for scraping the HTML and all the related JS, CSS,
and images required to render the web content, and creating the zip file.
Creating a HTML5ZipFile is then done using

document_file = HTML5ZipFile(
 path='/tmp/interactive_js_simulation.zip',
 language=getlang('en').code
)

Videos files

The following file classes can be added to the VideoNodes:

class VideoFile(DownloadFile)
class WebVideoFile(File)
class YouTubeVideoFile(WebVideoFile)
class SubtitleFile(DownloadFile)
class YouTubeSubtitleFile(File)

To create VideoFile, you need the code

video_file = VideoFile(
 path='dir/subdir/lecture_video_recording.mp4',
 language=getlang('en').code
)

VideoFiles can also be initialized with ffmpeg_settings (dict),
which will be used to determine compression settings for the video file.

video_file = VideoFile(
 path = "file:///path/to/file.mp4",
 ffmpeg_settings = {"max_width": 480, "crf": 28},
 language=getlang('en').code
)

WebVideoFiles must be given a web_url (str) to a video on YouTube or Vimeo,
and YouTubeVideoFiles must be given a youtube_id (str).

video_file2 = WebVideoFile(
 web_url = "https://vimeo.com/video-id",
 language=getlang('en').code,
)

video_file3 = YouTubeVideoFile(
 youtube_id = "abcdef",
 language=getlang('en').code,
)

WebVideoFiles and YouTubeVideoFiles can also take in download_settings (dict)
to determine how the video will be downloaded and high_resolution (boolean)
to determine what resolution to download.

Subtitle files can be created using

subs_file = SubtitleFile(
 path = "file:///path/to/file.vtt",
 language = languages.getlang('en').code,
)

You can also get subtitles using YouTubeSubtitleFile which takes a youtube_id
and youtube language code (may be different from internal language codes).
Use the helper method is_youtube_subtitle_file_supported_language to test if
a given youtube language code is supported by YouTubeSubtitleFile and skip the
ones that are not currently supported. Please let the LE content team know when
you run into language codes that are not supported so we can add them.

Thumbnail files

The class ThumbnailFile defined thumbnails that can be added to channel,
topic nodes, and content nodes. The extensions .png, .jpg, and .jpeg and supported.

The recommended size for thumbnail images is 420px by 236px (aspect ratio 16:9).

File size limits

Kolibri Studio does not impose any max-size limits for files uploaded, but chef
authors need to keep in mind that content channels will often be downloaded over
slow internet connections and viewed on devices with limited storage.

Below are some general guidelines for handling video files:

	Short videos (5-10 mins long) should be roughly less then 15MB

	Longer video lectures (1 hour long) should not be larger than 200MB

	High-resolution videos should be converted to lower resolution formats:
Here are some recommended choices for video vertical resolution:

	Use max height of 480 for videos that work well in low resolution (most videos)

	Use max height of 720 for high resolution videos (lectures with writing on board)

	Ricecooker can handle the video compressions for you if you specify the
--compress command line argument, or by setting the ffmpeg_settings property
when creating VideoFiles. The default values for ffmpeg_settings are as follows:

ffmpeg_settings = {'crf':32, 'max_width':"'trunc(oh*a/2)*2:min(ih,480)'" }

	The ffmpeg setting crf stands for Constant Rate Factor and is very useful
for controlling overall video quality. Setting crf=24 produces high quality
video (and possibly large file size), crf=28 is a mid-range quality, and
values of crf above 30 produce highly-compressed videos with small size.

PDF files are usually not large, but PDFs with many pages (more than 50 pages)
can be difficult to views and browse on devices with small screens, so we
recommend that long PDF documents be split into separate parts.

Note: Kolibri Studio imposes a file storage quota on a per-user basis. By default
the storage limit for new accounts is 500MB. Please get in touch with the content
team by email (content@le...) if you need a quota increase.

Kolibri Language Codes

The file le_utils/constants/languages.py [https://github.com/learningequality/le-utils/blob/master/le_utils/constants/languages.py]
and the lookup table in le_utils/resources/languagelookup.json [https://github.com/learningequality/le-utils/blob/master/le_utils/resources/languagelookup.json]
define the internal representation for languages codes used by Ricecooker, Kolibri,
and Kolibri Studio to identify content items in different languages.

The internal representation uses a mixture of two-letter codes (e.g. en),
two-letter-and-country code (e.g. pt-BR for Brazilian Portuguese),
and three-letter codes (e.g., zul for Zulu).

In order to make sure you have the correct language code when interfacing with
the Kolibri ecosystem (e.g. when uploading new content to Kolibri Studio), you
must lookup the language object using the helper method getlang:

>>> from le_utils.constants.languages import getlang
>>> language_obj = getlang('en') # lookup language using language code
>>> language_obj
Language(native_name='English', primary_code='en', subcode=None, name='English', ka_name=None)

The function getlang will return None if the lookup fails. In such cases, you
can try lookup by name or lookup by alpha2 code (ISO_639-1) methods defined below.

Once you’ve successfully looked up the language object, you can obtain the internal
representation language code from the language object’s code attribute:

>>> language_obj.code
'en'

The ricecooker API expects these internal representation language codes will be
supplied for all language attributes (channel language, node language, and files language).

More lookup helper methods

The helper method getlang_by_name allows you to lookup a language by name:

>>> from le_utils.constants.languages import getlang_by_name
>>> language_obj = getlang_by_name('English') # lookup language by name
>>> language_obj
Language(native_name='English', primary_code='en', subcode=None, name='English', ka_name=None)

The module le_utils.constants.languages defines two other language lookup methods:

	Use getlang_by_native_name for lookup up names by native language name,
e.g., you look for ‘Français’ to find French.

	Use getlang_by_alpha2 to perform lookups using the standard two-letter codes
defined in ISO_639-1 [https://en.wikipedia.org/wiki/ISO_639-1] that are
supported by the pycountries library.

HTML5App nodes and HTML5Zip files

Kolibri supports rendering of generic HTML content through the use of HTML5Apps
nodes, which correspond to HTML5Zip files. The Kolibri application serves the
contents of index.html in the root of the zip file inside an iframe.
All hrefs and img src attributes must be relative links to resources within
the zip file.

Example of HTML5App nodes

	simple example [http://mitblossoms-demo.learningequality.org/learn/#/recommended/caddd1df7a7b5849a444074408e31655]

	Note links are disabled (removed blue link) because A) external links are disable in iframe and B) because wouldn’t have access offline

	If link is to a PDF, IMG, or other useful resource than can be included in zip file then keep link but change to relative path

	medium complexity example [http://tessa-demo.learningequality.org/learn/#/45605d184d985e74960015190a6f4e4f/recommended/ecb158bff182511db6327be6f8a91891]

	Download all parts of a multi-part lesson into a single HTML5Zip file

	Original source didn’t have a “table of contents” so added manually (really bad CSS I need to fix in final version)

	complex example [http://kolibridemo.learningequality.org/learn/#/topics/c/d165c4fbc3bd5bbeaf3e51360965af29]

	Full javascript application packaged as a zip file

	Source: sushi-chef-phet [https://github.com/learningequality/sushi-chef-phet/blob/master/chef.py#L104]

Usability guidelines

	There must be an index.html file at the topmost level of the zip file, otherwise no app will be shown

	Text should be legible (high contrast, reasonable font size)

	Responsive: text should reflow to fit screens of different sizes. You can preview on a mobile device (or use Chrome’s mobile emulation mode) and ensure that the text fits in the viewport and doesn’t require horizontal scrolling (a maximum width is OK but minimum widths can cause trouble).

	Ensure navigation within HTML5App is easy to use:

	consistent use of navigation links (e.g. side menu with sections)

	consistent use of prev/next links

	Ensure links to external websites are disabled (remove <a> tag), and instead show the href in brackets next to the link text (so that potentially users could access URL by other means)

	e.g., “some other text link text (http://link.url) and more text continues”

Links and navigation

It’s currently not possible to have navigation links between different HTML5App nodes,
but relative links within the same zip file work (since they are rendered in same iframe).
It’s important to “cut” the source websites content into appropriately sized chunks:

	As small as possible so that resources are individually trackable, assignable, and reusable in multiple places

	But not too small, e.g. if a lesson contains three parts intended to be followed one after the other, then all three parts should be included in a single HTML5App with internal links

	Use nested folder structure to represent complex sources.
Whenever an HTML page that acts as a “container” with links to other pages
and PDFs we try to turn it into a Folder and put content items inside it.
Nested folders is main way of representing structured content.

HTML Writer utility class

The class HTMLWriter in ricecooker.utils.html_writer provides a basic helper
methods for creating files within a zip file.

See the source code:
ricecooker/utils/html_writer.py [https://github.com/learningequality/ricecooker/blob/master/ricecooker/utils/html_writer.py#L5]

Static assets download utility

We have a handy function for fetching all of a webpage’s static assets (JS, CSS, images, etc.), so that, in theory, you could scrape a webpage and display it in Kolibri exactly as you see it in the website itself in your browser. See:

	the source: ricecooker.utils.downloader.download_static_assets() [https://github.com/learningequality/ricecooker/blob/428bfde98e0f76310eccd367886aebe62cd9ae5a/ricecooker/utils/downloader.py#L129]

	example usage in a simple app: MEET chef [https://github.com/learningequality/sushi-chef-MEET/blob/425327ad552f9f25f582a2057048f6d4475382c1/chef.py#L205], which comprises articles with text and images

	example usage in a complex app: Blockly Games chef [https://github.com/learningequality/sushi-chef-blockly-games/blob/270e8bc620be0ed883f40e2739878db54f7243b7/chef.py#L193], an interactive JS game with images and sounds

Starter template

We also have a starter template [https://github.com/learningequality/html-app-starter] for apps, particularly helpful for displaying content that’s mostly text and images, such as articles. It applies some default styling on text to ensure readability, consistency, and mobile responsiveness.

It also includes a sidebar for those apps where you may want internal navigation. However, consider if it would be more appropriate to turn each page into its own content item and grouping them together into a single folder (topic).

How to decide between the static assets downloader (above) and this starter template? Prefer the static assets downloader if it makes sense to keep the source styling or JS, such as in the case of an interactive app (e.g. Blockly Games [https://github.com/learningequality/sushi-chef-blockly-games]) or an app-like reader (e.g. African Storybook [https://github.com/learningequality/sushi-chef-african-storybook]). If the source is mostly a text blob or an article – and particularly if the source styling is not readable or appealing – using the template could make sense, especially given that the template is designed for readability.

The bottom line is ensure the content meets the guidelines layed out above – legible, responsive, easy to navigate, and “look good” (you define “good” :P). Fulfilling that, use your judgement on whatever approach makes sense and that you can use effectively!

Exercise and exercise questions

ExerciseNodes are special objects that have questions used for assessment.

In order to set the criteria for completing exercises, you must set exercise_data
to a dict containing a mastery_model field based on the mastery models provided
in le_utils.constants.exercises.
If no data is provided, ricecooker will default to mastery at 3 of 5 correct.
For example:

node = ExerciseNode(
 exercise_data={
 'mastery_model': exercises.M_OF_N,
 'randomize': True,
 'm': 3,
 'n': 5,
 },
 ...
)

To add a question to your exercise, you must first create a question model from
ricecooker.classes.questions. Your sushi chef is responsible for determining
which question type to create. Here are the available question types:

	SingleSelectQuestion: questions that only have one right answer (e.g. radio button questions)

	MultipleSelectQuestion: questions that have multiple correct answers (e.g. check all that apply)

	InputQuestion: questions that have text-based answers (e.g. fill in the blank)

	PerseusQuestion: special question type for pre-formatted perseus questions

Each question class has the following attributes that can be set at initialization:

	id (str): question’s unique id

	question (str): question body, in plaintext or Markdown format;
math expressions must be in Latex format, surrounded by $, e.g. $f(x) = 2^3$.

	answers ([{‘answer’:str, ‘correct’:bool}]): answers to question, also in plaintext or Markdown

	hints (str or [str]): optional hints on how to answer question, also in plaintext or Markdown

To set the correct answer(s) for MultipleSelectQuestions, you must provide a list
of all of the possible choices as well as an array of the correct answers
(all_answers [str]) and correct_answers [str] respectively).

question = MultipleSelectQuestion(
 question = "Select all prime numbers.",
 correct_answers = ["2", "3", "5"],
 all_answers = ["1", "2", "3", "4", "5"],
 ...
)

To set the correct answer(s) for SingleSelectQuestions, you must provide a list
of all possible choices as well as the correct answer (all_answers [str] and
correct_answer str respectively).

question = SingleSelectQuestion(
 question = "What is 2 x 3?",
 correct_answer = "6",
 all_answers = ["2", "3", "5", "6"],
 ...
)

To set the correct answer(s) for InputQuestions, you must provide an array of
all of the accepted answers (answers [str]).

question = InputQuestion(
 question = "Name a factor of 10.",
 answers = ["1", "2", "5", "10"],
)

To add images to a question’s question, answers, or hints, format the image path
with '' and ricecooker will parse them automatically.

Once you have created the appropriate question object, add it to an exercise object
with exercise_node.add_question(question)

Installation

The ricecooker library is published as a Python3-only package on PyPI [https://pypi.python.org/pypi/ricecooker].

Software prerequisites

The ricecooker library requires Python 3.5+ and some additional tools like
ffmpeg for video compression, and phantomjs for scraping webpages that
require JavaScript to run before the DOM is rendered.

On a Debian-like linux box, you can install all the necessary packages using:

apt-get install build-essential gettext pkg-config \
 python3 python3-pip python3-dev python3-virtualenv virtualenv python3-tk \
 linux-tools libfreetype6-dev libxft-dev libwebp-dev libjpeg-dev libmagickwand-dev \
 ffmpeg phantomjs

Mac OS X users can install the necessary software using Homebrew:

brew install freetype imagemagick@6 ffmpeg phantomjs
brew link --force imagemagick@6

Stable release

To install ricecooker, run this command in your terminal:

pip install ricecooker

This is the preferred method to install ricecooker, as it will always install
the most recent stable release.

If you don’t have pip installed, then this
Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/]
will guide you through the process of setting up.

Note: We recommend you install ricecooker in a Python virtualenv specific for
cheffing work, rather that globally for your system python. For information about
creating and activating a virtualenv, you can follow the instructions provided
here [http://kolibri-dev.readthedocs.io/en/develop/start/getting_started.html#virtual-environment].

Install from github

You can install ricecooker directly from the github repo [https://github.com/learningequality/ricecooker]
using the following command:

pip install git+https://github.com/learningequality/ricecooker

Occasionally, you’ll want to install a ricecooker version from a specific branch,
instead of the default branch version. This is the way to do this:

pip install -U git+https://github.com/learningequality/ricecooker@somebranchname

The -U flag forces the update instead of reusing any previously installed/cached versions.

Install from source

Another option for installing ricecooker is to clone the repo and install using:

git clone git://github.com/learningequality/ricecooker
cd ricecooker
pip install -e .

The flag -e installs ricecooker in “editable mode,” which means you can now
make changes to the source code and you’ll see the changes reflected immediately.
This installation method very useful if you’re working around a bug in ricecooker
or extending the crawling/scraping/http/html utilities in ricecooker/utils/.

Speaking of bugs, if you ever run into problems while using ricecooker, you should
let us know by opening an issue [https://github.com/learningequality/ricecooker/issues].

Running chef scripts

The base class SushiChef provides a lot of command line arguments that control
the chef script’s operation. It is expected that every chef script will come
with a README that explains the desired command line arguments for the chef script.

Executable scripts

On UNIX systems, you can make your sushi chef script (e.g. chef.py) run as a
standalone command line application. To make a script program, you need to do three things:

- Add the line `#!/usr/bin/env python` as the first line of `chef.py`
- Add this code block at the bottom of `chef.py` if it is not already there:

 if __name__ == '__main__':
 chef = MySushiChef() # replace with you chef class name
 chef.main()

- Make the file `chef.py` executable by running `chmod +x chef.py` on the
 command line.

You can now call your sushi chef script using ./chef.py ... instead of the longer
python chef.py

Ricecooker CLI

You can run ./chef.py -h to see an always-up-to-date info about the ricecooker CLI interface:

usage: tutorial_chef.py [-h] [--token TOKEN] [-u] [-v] [--quiet] [--warn]
 [--debug] [--compress] [--thumbnails]
 [--download-attempts DOWNLOAD_ATTEMPTS]
 [--reset | --resume]
 [--step {INIT, CONSTRUCT_CHANNEL, CREATE_TREE, DOWNLOAD_FILES, GET_FILE_DIFF,
 START_UPLOAD, UPLOADING_FILES, UPLOAD_CHANNEL, PUBLISH_CHANNEL,DONE, LAST}]
 [--prompt] [--stage] [--publish] [--daemon]
 [--nomonitor] [--cmdsock CMDSOCK]

required arguments:
 --token TOKEN Authorization token (can be token or path to file with token)

optional arguments:
 -h, --help show this help message and exit
 -u, --update Force re-download of files (skip .ricecookerfilecache/ check)
 -v, --verbose Verbose mode
 --quiet Print only errors to stderr
 --warn Print warnings to stderr
 --debug Print debugging log info to stderr
 --compress Compress high resolution videos to low resolution
 videos
 --thumbnails Automatically generate thumbnails for topics
 --download-attempts DOWNLOAD_ATTEMPTS
 Maximum number of times to retry downloading files
 --reset Restart session, overwriting previous session (cannot
 be used with --resume flag)
 --resume Resume from ricecooker step (cannot be used with
 --reset flag)
 --step {INIT, ... Step to resume progress from (must be used with --resume flag)
 --prompt Prompt user to open the channel after creating it
 --stage Upload to staging tree to allow for manual
 verification before replacing main tree
 --publish Publish newly uploaded version of the channel
 --daemon Run chef in daemon mode
 --nomonitor Disable SushiBar progress monitoring
 --cmdsock CMDSOCK Local command socket (for cronjobs)

extra options:
 You can pass arbitrary key=value options on the command line

Extra options

In addition to the command line arguments described above, the ricecooker CLI
supports passing additional keyword options using the format key=value key2=value2.

It is common for a chef script to accept a “language option” like lang=fr which
runs the French version of the chef script. This way a single chef codebase can
create multiple Kolibri Studio channels, one for each language.

These extra options will be parsed along with the riceooker arguments and
passed as along to all the chef’s methods: pre_run, run, get_channel,
construct_channel, etc.

For example, a script started using ./chef.py ... lang=fr could:

	Subclass the method get_channel to set the channel name to
"Channel Name ({})".format(getlang('fr').native_name)

	Use the language code fr in pre_run, run, and construct_channel to
crawl and scrape the French version of the source website

Resuming interrupted chef runs

If your ricecooker session gets interrupted, you can resume from any step that
has already completed using --resume --step=<step> option.
If step is not specified, ricecooker will resume from the last step you ran.
The “state” necessary to support these checkpoints is stored in the directory
restore in the folder where the chef runs.

Use the --reset flag to skip the auto-resume prompt.

Caching

Use --update argument to skip checks for the .ricecookerfilecache directory.
This is required if you suspect the files on the source website have been updated.

Note that some chef scripts implement their own caching mechanism, so you need
to disable those caches as well if you want to make sure you’re getting new content.

Run scripts

For complicated chef scripts that run in multiple languages or with multiple
options, the chef author can implement a “run script” that can be run as:

./run.sh

The script should contain the appropriate command args and options (basically the
same thing as the instructions in the chef’s README but runnable).

Daemon mode

Starting a chef script with the --daemon argument makes it listen for remote
control commands from the sushibar [https://sushibar.learningequality.org/] host.
For more information, see Daemonization.

Parsing HTML using BeautifulSoup

Basic code to GET the HTML source of a webapge and parse it:

import requests
from bs4 import BeautifulSoup

url = 'https://somesite.edu'
html = requests.get(url).content
doc = BeautifulSoup(html, "html.parser")

Basic API uses find and find_all:

special_ul = doc.find('ul', class_='some-special-class')
section_lis = special_ul.find_all('li', recursive=False) # search only immediate children
for section_li in section_lis:
 print('processing a section right now...')
 print(section_li.prettify()) # useful seeing HTML in when developing...

Further reading

You can learn more about BeautifulSoup from these excellent tutorials:

	http://akul.me/blog/2016/beautifulsoup-cheatsheet/

	http://youkilljohnny.blogspot.ca/2014/03/beautifulsoup-cheat-sheet-parse-html-by.html

	http://www.compjour.org/warmups/govt-text-releases/intro-to-bs4-lxml-parsing-wh-press-briefings/

CSV Metadata Workflow

It is possible to create Kolibri channels by:

	Organizing content items (documents, videos, mp3 files) into a folder hierarchy
on the local file system

	Specifying metadata in the form of CSV files

The CSV-based workflow is a good fit for non-technical users since it doesn’t
require writing any code, but instead can use the Excel to provide all the metadata.

	CSV-based workflow README [https://github.com/learningequality/sample-channels/tree/master/channels/csv_channel]

	Example content folder [https://github.com/learningequality/sample-channels/tree/master/channels/csv_exercises/content]

	Example Channel.csv metadata file [https://github.com/learningequality/sample-channels/blob/master/channels/csv_channel/content/Channel.csv]

	Example Content.csv metadata file [https://github.com/learningequality/sample-channels/blob/master/channels/csv_channel/content/Content.csv]

Organizing the content into folders and creating the CSV metadata files is most
of the work, and can be done by non-programmers.
The generic sushi chef script (LineCook) is then used to upload the channel.

CSV Exercises

You can also use the CSV metadata workflow to upload simple exercises to Kolibri Studio.
See this doc for the technical details about creating exercises.

CSV Exercises Workflow

In addition to content nodes (files) and topics (folders), we can also add also
specify exercises using CSV metadata files (and associated images).

Exercises nodes store the usual metadata that all content nodes have (title,
description, author, license, etc.) and contain multiple types of questions.
The currently supported question types for the CSV workflow are:

	input_question: Numeric input question, e.g. What is 2+2?

	single_selection: Multiple choice questions where a single correct answer.

	multiple_selection: Multiple choice questions with multiple correct answers/

To prepare a CSV content channel with exercises, you need the usual things
(A channel directory channeldir, Channel.csv, and Content.csv) and two
additional metadata files Exercises.csv and ExerciseQuestions.csv, the format
of which is defined below.

You can download template HERE
https://github.com/learningequality/sample-channels/tree/master/channels/csv_exercises

Exercises.csv

A CSV file that contains the following fields:

	Path *:

	Title *:

	Source ID *: A unique identifier for this exercise, e.g., exrc1

	Description:

	Author:

	Language:

	License ID *:

	License Description:

	Copyright Holder:

	Number Correct: (integer, optional) This field controls how many questions
students must get correct in order to complete the exercise.

	Out of Total: (integer, optional) This field controls how many questions
students are presented in a row, if not specified the value will be determined
automatically based on the number of questions available (up to maximum of 5).

	Randomize: (bool) True or False

	Thumbnail:

ExerciseQuestions.csv

Individual questions

	Source ID *: This field is the link (foreign key) to the an exercise node, e.g. exrc1

	Question ID *: A unique identifier for this question within the exercise, e.g. q1

	Question type *: (str) Question types are defined in
le-utils [https://github.com/learningequality/le-utils/blob/master/le_utils/constants/exercises.py#L34].
The currently supported question types for the CSV workflow are:

	input_question: Numeric input question, e.g. What is 2+2?

	single_selection: Multiple choice questions where a single correct answer.

	multiple_selection: Multiple choice questions with multiple correct answers/

	Question *: (markdown) contains the question setup and the prompt, e.g. “What is 2+2?”

	Option A: (markdown) The first answer option

	Option B: (markdown)

	Option C: (markdown)

	Option D: (markdown)

	Option E: (markdown) The fifth answer option

	Options F...: Use this field for questions with more than five possible answers.
This field can contain a list of multiple “🍣”-separated string values,
e.g., “Answer F🍣Answer G🍣Answer H”

	Correct Answer *: The correct answer

	Correct Answer 2: Another correct

	Correct Answer 3: A third correct answer

	Hint 1: (markdown)

	Hint 2:

	Hint 3:

	Hint 4:

	Hint 5:

	Hint 6+: Use this field for questions with more than five hints.
This field stores a list of “🍣”-separated string values,
e.g., “Hint 6 text🍣Hint 7 text🍣Hing 8 text”

The question, options, answers, and hints support Markdown and LaTeX formatting:

	Use two newlines to start a new paragraph

	Use the syntax to include images in text field

	Use dollar signs as math delimiters $\alpha\beta$

Markdown image paths

Note that image paths used in Markdown will be interpreted as relative to the
location where the chef is running. For example, if the sushi chef project directory
looks like this:

csvchef.py
figures/
 exercise3/
 somefig.png
content/
 Channel.csv
 Content.csv
 Exercises.csv
 ExerciseQuestions.csv
 channeldir/
 somefile.mp4
 anotherfile.pdf

Then the code for including somefig.png a Markdown field of an exercise question
is .

Ordering

The order that content nodes appear in the channel is determined based on their
filenames in alphabetical order, so the choice of filenames can be used to enforce
a particular order of items within each folder.

The filename part of the Path * attribute of exercises specified in Exercises.csv
gives each exercise a “virtual filename” so that exercises will appear in the same
alphabetical order, intermixed with the CSV content items defined in Content.csv.

Implementation details

	To add exercises to a certain channel topic, the folder corresponding to this
topic must exist inside the channeldir folder (even if it contains no files).
A corresponding entry must be added to Content.csv to desribe the metadata
for the topic node containing the exercises.

Writing a SousChef

Kolibri is an open source educational platform to distribute content to areas with
little or no internet connectivity. Educational content is created and edited on
Kolibri Studio [https://studio.learningequality.org], which is a platform for
organizing content to import from the Kolibri applications.

A souchef is a program that scrapes content from a source website source and
puts the content into a format that can be imported into Kolibri Studio.
This project will read a given source’s content and parse and organize that content
into a folder + csv structure, which will then be imported into Kolibri Studio.

Definitions

A sous chef script is responsible for scraping content from a source and putting
it into a folder and CSV structure.

Installation

	Install Python 3 [https://www.python.org/downloads/] if you don’t have it already.

	Install pip [https://pypi.python.org/pypi/pip] if you don’t have it already.

	Create a Python virtual environment for this project (optional, but recommended):

	Install the virtualenv package: pip install virtualenv

	The next steps depends if you’re using UNIX (Mac/Linux) or Windows:

	For UNIX systems:

	Create a virtual env called venv in the current directory using the
following command: virtualenv -p python3 venv

	Activate the virtualenv called venv by running: source venv/bin/activate.
Your command prompt will change to indicate you’re working inside venv.

	For Windows systems:

	Create a virtual env called venv in the current directory using the
following command: virtualenv -p C:/Python36/python.exe venv.
You may need to adjust the -p argument depending on where your version
of Python is located.

	Activate the virtualenv called venv by running: .\venv\Scripts\activate

	Run pip install -r requirements.txt to install the required python libraries.

Getting started

Here are some notes and sample code to help you get started writing a sous chef.

Downloader

The Ricecooker module utils/downloader.py provides a read function that can
read from both urls and file paths. To use:

from ricecooker.utils.downloader import read

local_file_content = read('/path/to/local/file.pdf') # Load local file
web_content = read('https://example.com/page') # Load web page contents
js_content = read('https://example.com/loadpage', loadjs=True) # Load js before getting contents

The loadjs option will run the JavaScript code on the webpage before reading
the contents of the page, which can be useful for scraping certain websites that
depend on JavaScript to build the page DOM tree.

If you need to use a custom session, you can also use the session option. This can
be useful for sites that require login information.

HTML parsing using BeautifulSoup

BeautifulSoup is an HTML parsing library that allows to select various DOM elements,
and extract their attributes and text contents. Here is some sample code for getting
the text of the LE mission statement.

from bs4 import BeautifulSoup
from ricecooker.utils.downloader import read

url = 'https://learningequality.org/'
html = read(url)
page = BeautifulSoup(html, 'html.parser')

main_div = page.find('div', {'id': 'body-content'})
mission_el = main_div.find('h3', class_='mission-state')
mission = mission_el.get_text().strip()
print(mission)

The most commonly used parts of the BeautifulSoup API are:

	.find(tag_name, <spec>): find the next occurrence of the tag tag_name that
has attributes specified in <spec> (given as a dictionary), or can use the
shortcut options id and class_ (note extra underscore).

	.find_all(tag_name, <spec>): same as above but returns a list of all matching
elements. Use the optional keyword argument recursive=False to select only
immediate child nodes (instead of including children of children, etc.).

	.next_sibling: find the next element (for badly formatted pages with no useful selectors)

	.get_text() extracts the text contents of the node. See also helper method
called get_text that performs additional cleanup of newlines and spaces.

	.extract(): to remove a element from the DOM tree (useful to remove labels, and extra stuff)

For more info about BeautifulSoup, see the docs [https://www.crummy.com/software/BeautifulSoup/bs4/doc/].

Using the DataWriter

The DataWriter (ricecooker.utils.data_writer.DataWriter) is a tool for creating channel
.zip files in a standardized format. This includes creating folders, files,
and CSV metadata files that will be used to create the channel on Kolibri Studio.

Step 1: Open a DataWriter

The DataWriter class is meant to be used as a context manager. To use it, add
the following to your code:

from ricecooker.utils.data_writer import DataWriter
with DataWriter() as writer:
 # Add your code here

You can also pass the argument write_to_path to control where the DataWriter
will generate a zip file.

Step 2: Create a Channel

Next, you will need to create a channel. Channels need the following arguments:

	title (str): Name of channel

	source_id (str): Channel’s unique id

	domain (str): Who is providing the content

	language (str): Language of channel

	description (str): Description of the channel (optional)

	thumbnail (str): Path in zipfile to find thumbnail (optional)

To create a channel, call the add_channel method from DataWriter

from ricecooker.utils.data_writer import DataWriter

CHANNEL_NAME = "Channel name shown in UI"
CHANNEL_SOURCE_ID = "<some unique identifier>"
CHANNEL_DOMAIN = "<yourdomain.org>"
CHANNEL_LANGUAGE = "en"
CHANNEL_DESCRIPTION = "What is this channel about?"

with DataWriter() as writer:
 writer.add_channel(CHANNEL_NAME, CHANNEL_SOURCE_ID, CHANNEL_DOMAIN, CHANNEL_LANGUAGE, description=CHANNEL_DESCRIPTION)

To add a channel thumbnail, you must write the file to the zip folder

thumbnail = writer.add_file(CHANNEL_NAME, "Channel Thumbnail", CHANNEL_THUMBNAIL, write_data=False)
writer.add_channel(CHANNEL_NAME, CHANNEL_SOURCE_ID, CHANNEL_DOMAIN, CHANNEL_LANGUAGE, description=CHANNEL_DESCRIPTION, thumbnail=thumbnail)

The DataWriter’s add_file method returns a filepath to the downloaded thumbnail.
This method will be covered more in-depth in Step 4.

Every channel must have language code specified (a string, e.g., 'en', 'fr').
To check if a language code exists, you can use the helper function getlang,
or lookup the language by name using getlang_by_name or getlang_by_native_name:

from le_utils.constants.languages import getlang, getlang_by_name, getlang_by_native_name
getlang('fr').code # = 'fr'
getlang_by_name('French').code # = 'fr'
getlang_by_native_name('Français').code # = 'fr'

The same language codes can optionally be applied to folders and files if they
differ from the channel language (otherwise assumed to be the same as channel).

Step 3: Add a Folder

In order to add subdirectories, you will need to use the add_folder method
from the DataWriter class. The method add_folder accepts the following arguments:

	path (str): Path in zip file to find folder

	title (str): Content’s title

	source_id (str): Content’s original ID (optional)

	language (str): Language of content (optional)

	description (str): Description of the content (optional)

	thumbnail (str): Path in zipfile to find thumbnail (optional)

Here is an example of how to add a folder:

Assume writer is a DataWriter object
TOPIC_NAME = "topic"
writer.add_folder(CHANNEL_NAME + "/" + TOPIC_NAME, TOPIC_NAME)

Step 4: Add a File

Finally, you will need to add files to the channel as learning resources.
This can be accomplished using the add_file method, which accepts these arguments:

	path (str): Path in zip file to find folder

	title (str): Content’s title

	download_url (str): Url or local path of file to download

	license (str): Content’s license (use le_utils.constants.licenses)

	license_description (str): Description for content’s license

	copyright_holder (str): Who owns the license to this content?

	source_id (str): Content’s original ID (optional)

	description (str): Description of the content (optional)

	author (str): Author of content

	language (str): Language of content (optional)

	thumbnail (str): Path in zipfile to find thumbnail (optional)

	write_data (boolean): Indicate whether to make a node (optional)

For instance:

from le_utils.constants import licenses

Assume writer is a DataWriter object
PATH = CHANNEL_NAME + "/" + TOPIC_NAME + "/filename.pdf"
writer.add_file(PATH, "Example PDF", "url/or/link/to/file.pdf", license=licenses.CC_BY, copyright_holder="Somebody")

The write_data argument determines whether or not to make the file a node.
This is espcially helpful for adding supplementary files such as thumbnails
without making them separate resources. For example, adding a thumbnail to a
folder might look like the following:

Assume writer is a DataWriter object
TOPIC_PATH = CHANNEL_NAME + "/" + TOPIC_NAME
PATH = TOPIC_PATH + "/thumbnail.png"
thumbnail = writer.add_file(PATH, "Thumbnail", "url/or/link/to/thumbnail.png", write_data=False)
writer.add_folder(TOPIC_PATH, TOPIC_NAME, thumbnail=thumbnail)

Every content node must have a license and copyright_holder, otherwise
the later stages of the content pipeline will reject. You can see the full list
of allowed license codes by running print(le_utils.constants.licenses.choices).
Use the ALL_CAPS constants to obtain the appropriate string code for a license.
For example, to set a file’s license to the Creative Commons CC BY-NC-SA, get
get the code from licenses.CC_BY_NC_SA.

Note: Files with licenses.PUBLIC_DOMAIN do not require a copyright_holder.

Extra Tools

PathBuilder (ricecooker.utils.path_builder.py)

The PathBuilder clas is a tool for tracking folder and file paths to write to
the zip file. To initialize a PathBuilder object, you need to specify a channel name:

from ricecooker.utils.path_builder import PathBuilder

CHANNEL_NAME = "Channel"
PATH = PathBuilder(channel_name=CHANNEL_NAME)

You can now build this path using open_folder, which will append another item to the path:

...
PATH.open_folder('Topic') # str(PATH): 'Channel/Topic'

You can also set a path from the root directory:

...
PATH.open_folder('Topic') # str(PATH): 'Channel/Topic'
PATH.set('Topic 2', 'Topic 3') # str(PATH): 'Channel/Topic 2/Topic 3'

If you’d like to go back one step back in the path:

...
PATH.set('Topic 1', 'Topic 2') # str(PATH): 'Channel/Topic 1/Topic 2'
PATH.go_to_parent_folder() # str(PATH): 'Channel/Topic 1'
PATH.go_to_parent_folder() # str(PATH): 'Channel'
PATH.go_to_parent_folder() # str(PATH): 'Channel' (Can't go past root level)

To clear the path:

...
PATH.set('Topic 1', 'Topic 2') # str(PATH): 'Channel/Topic 1/Topic 2'
PATH.reset() # str(PATH): 'Channel'

Downloader (ricecooker.utils.downloader.py)

downloader.py has a read function that can read from both urls and file paths.
To use:

from ricecooker.utils.downloader import read

local_file_content = read('/path/to/local/file.pdf') # Load local file
web_content = read('https://example.com/page') # Load web page contents
js_content = read('https://example.com/loadpage', loadjs=True) # Load js before getting contents

The loadjs option will load any scripts before reading the contents of the page,
which can be useful for web scraping.

If you need to use a custom session, you can also use the session option. This can
be useful for sites that require login information.

HTMLWriter (ricecooker.utils.html_writer.py)

The HTMLWriter is a tool for generating zip files to be uploaded to Kolibri Studio

First, open an HTMLWriter context:

from ricecooker.utils.html_writer import HTMLWriter
with HTMLWriter('./myzipfile.zip') as zipper:
 # Add your code here

To write the main file, you will need to use the write_index_contents method

contents = "<html><head></head><body>Hello, World!</body></html>"
zipper.write_index_contents(contents)

You can also add other files (images, stylesheets, etc.) using write_file, write_contents and write_url:

Returns path to file "styles/style.css"
css_path = zipper.write_contents("style.css", "body{padding:30px}", directory="styles")
extra_head = "<link href='{}' rel='stylesheet'></link>".format(css_path) # Can be inserted into <head>

img_path = zipper.write_file("path/to/img.png") # Note: file must be local
img_tag = "...".format(img_path) # Can be inserted as image

script_path = zipper.write_url("src.js", "http://example.com/src.js", directory="src")
script = "<script src='{}' type='text/javascript'></script>".format(script_path) # Can be inserted into html

If you need to check if a file exists in the zipfile, you can use the contains method:

Zipfile has "index.html" file
zipper.contains('index.html') # Returns True
zipper.contains('css/style.css') # Returns False

See the above example on BeautifulSoup on how to parse html.

Notes for ricecooker library developers

Supported Python Versions for Chefs

All chefs written need to support either Python 3.4 or 3.5.

If you need a module or need to use syntax that is only available in
newer Python versions, please get in touch.

Computed identifiers

Channel ID

The channel_id (uuid hex str) property is an important identifier that:

	Is used in the wire formats used to communicate between ricecooker and Kolibri Studio

	Appears as part of URLs for on both Kolibri Studio and Kolibri

	Determines the filename for the channel sqlite3 database file that Kolibri imports
from Kolibri Studio.

To compute the channel_id, you need to know the channel’s source_domain (a.k.a. channel_info['CHANNEL_SOURCE_DOMAIN'])
and the channel’s source_id (a.k.a channel_info['CHANNEL_SOURCE_ID']):

import uuid
channel_id = uuid.uuid5(
 uuid.uuid5(uuid.NAMESPACE_DNS, source_domain),
 source_id
).hex

This above code snippet is useful if you know the source_domain and source_id
and you want to determine the channel_id without crating a ChannelNode object.

The ChannelNode class implements the following methods:

class ChannelNode(Node):
 def get_domain_namespace(self):
 return uuid.uuid5(uuid.NAMESPACE_DNS, self.source_domain)
 def get_node_id(self):
 return uuid.uuid5(self.get_domain_namespace(), self.source_id)

Given a channel object ch, you can find its id using channel_id = ch.get_node_id().hex.

Node IDs

Content nodes within the Kolibri ecosystem have the following identifiers:

	source_id (str): arbitrary string used to identify content item within the
source website, e.g., the a database id or URL.

	node_id (uuid): an identifier for the content node within the channel tree

	content_id (uuid): an identifier derived from the channel source_domain
and the content node’s source_id used for tracking a user interactions with
the content node (e.g. video watched, or exercise completed).

When a particular piece of content appears in multiple channels, or in different
places within a tree, the node_id of each occurrence will be different, but the
content_id of each item will be the same for all copies. In other words, the
content_id keeps track of the “is identical to” information about content nodes.

Content nodes inherit from the TreeNode class, which implements the following methods:

class TreeNode(Node):
 def get_domain_namespace(self):
 return self.domain_ns if self.domain_ns else self.parent.get_domain_namespace()
 def get_content_id(self):
 return uuid.uuid5(self.get_domain_namespace(), self.source_id)
 def get_node_id(self):
 return uuid.uuid5(self.parent.get_node_id(), self.get_content_id().hex)

The content_id identifier is computed based on the channel source domain,
and the source_id attribute of the content node. To find the content_id hex
value for a content node node, use content_id = node.get_content_id().hex.

The node_id of a content nodes within a tree is computed based on the parent
node’s node_id and current node’s content_id.

Running chef scripts

The base class SushiChef provides a lot of command line arguments that control
the chef script’s operation. It is expected that every chef script will come
with a README that explains the desired command line arguments for the chef script.

Executable scripts

On UNIX systems, you can make your sushi chef script (e.g. chef.py) run as a
standalone command line application. To make a script program, you need to do three things:

- Add the line `#!/usr/bin/env python` as the first line of `chef.py`
- Add this code block at the bottom of `chef.py` if it is not already there:

 if __name__ == '__main__':
 chef = MySushiChef() # replace with you chef class name
 chef.main()

- Make the file `chef.py` executable by running `chmod +x chef.py` on the
 command line.

You can now call your sushi chef script using ./chef.py ... instead of the longer
python chef.py

Ricecooker CLI

You can run ./chef.py -h to see an always-up-to-date info about the ricecooker CLI interface:

usage: tutorial_chef.py [-h] [--token TOKEN] [-u] [-v] [--quiet] [--warn]
 [--debug] [--compress] [--thumbnails]
 [--download-attempts DOWNLOAD_ATTEMPTS]
 [--reset | --resume]
 [--step {INIT, CONSTRUCT_CHANNEL, CREATE_TREE, DOWNLOAD_FILES, GET_FILE_DIFF,
 START_UPLOAD, UPLOADING_FILES, UPLOAD_CHANNEL, PUBLISH_CHANNEL,DONE, LAST}]
 [--prompt] [--stage] [--publish] [--daemon]
 [--nomonitor] [--cmdsock CMDSOCK]

required arguments:
 --token TOKEN Authorization token (can be token or path to file with token)

optional arguments:
 -h, --help show this help message and exit
 -u, --update Force re-download of files (skip .ricecookerfilecache/ check)
 -v, --verbose Verbose mode
 --quiet Print only errors to stderr
 --warn Print warnings to stderr
 --debug Print debugging log info to stderr
 --compress Compress high resolution videos to low resolution
 videos
 --thumbnails Automatically generate thumbnails for topics
 --download-attempts DOWNLOAD_ATTEMPTS
 Maximum number of times to retry downloading files
 --reset Restart session, overwriting previous session (cannot
 be used with --resume flag)
 --resume Resume from ricecooker step (cannot be used with
 --reset flag)
 --step {INIT, ... Step to resume progress from (must be used with --resume flag)
 --prompt Prompt user to open the channel after creating it
 --stage Upload to staging tree to allow for manual
 verification before replacing main tree
 --publish Publish newly uploaded version of the channel
 --daemon Run chef in daemon mode
 --nomonitor Disable SushiBar progress monitoring
 --cmdsock CMDSOCK Local command socket (for cronjobs)

extra options:
 You can pass arbitrary key=value options on the command line

Extra options

In addition to the command line arguments described above, the ricecooker CLI
supports passing additional keyword options using the format key=value key2=value2.

It is common for a chef script to accept a “language option” like lang=fr which
runs the French version of the chef script. This way a single chef codebase can
create multiple Kolibri Studio channels, one for each language.

These extra options will be parsed along with the riceooker arguments and
passed as along to all the chef’s methods: pre_run, run, get_channel,
construct_channel, etc.

For example, a script started using ./chef.py ... lang=fr could:

	Subclass the method get_channel to set the channel name to
"Channel Name ({})".format(getlang('fr').native_name)

	Use the language code fr in pre_run, run, and construct_channel to
crawl and scrape the French version of the source website

Resuming interrupted chef runs

If your ricecooker session gets interrupted, you can resume from any step that
has already completed using --resume --step=<step> option.
If step is not specified, ricecooker will resume from the last step you ran.
The “state” necessary to support these checkpoints is stored in the directory
restore in the folder where the chef runs.

Use the --reset flag to skip the auto-resume prompt.

Caching

Use --update argument to skip checks for the .ricecookerfilecache directory.
This is required if you suspect the files on the source website have been updated.

Note that some chef scripts implement their own caching mechanism, so you need
to disable those caches as well if you want to make sure you’re getting new content.

Run scripts

For complicated chef scripts that run in multiple languages or with multiple
options, the chef author can implement a “run script” that can be run as:

./run.sh

The script should contain the appropriate command args and options (basically the
same thing as the instructions in the chef’s README but runnable).

Daemon mode

Starting a chef script with the --daemon argument makes it listen for remote
control commands from the sushibar [https://sushibar.learningequality.org/] host.
For more information, see Daemonization.

Daemon mode

Running a chef script with the --daemon option will make it listen to remote
commands: either from sushibar [https://sushibar.learningequality.org/] and/or
from localhost cron jobs.

SushiBar control channel

To enable remote commands from sushibar, start the chef script using

./chef.py --daemon <otherstuff>

Local control channel

To also enable local UNIX domain sockets commands, start the chef script using

./chef.py --daemon --cmdsock=/var/run/cmdsocks/channelA.sock <otherstuff>

Once the chef is running, a chef run can be started by sending the appropriate
json data to the UNIX domain socket /var/run/cmdsocks/channelA.sock.
Use the nc command for this (install netcat using apt-get install netcat-openbsd).

/bin/echo '{"command":"start"}' | /bin/nc -UN /var/run/cmdsocks/channelA.sock

If you need to override chef run args or options use:

/bin/echo '{"command":"start", "args":{"publish":true}, "options":{"lang":"en"} }' | /bin/nc -UN /var/run/cmdsocks/channelA.sock

The above command will run the chef, re-using the command line args and options,
but setting publish to True and also providing the keyword option lang=en.

Chef runs can be scheduled by setting up cronjobs for the above commands.

SushOps

SushOps engineers (also called ETL engineers) are responsible for making sure
the overall content pipeline runs smoothly. Assuming the chefops
is done right, running the chef script should be as simple as running a single command.
SushOps engineers need to make sure not only that chef is running correctly,
but also monitor content on the Sushibar dashboard, in Kolibri Studio, and in
downstream remixed channels, and in Kolibri installations.

SushOps is an internal role to Learning Equality but we’ll document the responsibilities
here for convenience, since this role is closely related to the ricecooker library.

Project management and support

SushOps manage and support developers working on new chefs scripts, by reviewing
spec sheets, writing technical specs, preregistering chefs on sushibar, crating
necessary git repos, reviewing pull requests, chefops, and participating in Q/A.

Cheffing servers

Chef scripts run on various cheffing servers, equipped with appropriate storage
space and processing power (if needed for video transcoding). Currently we have:

	CPU-intensive chefs running on vader

	other chefs running on cloud-kitchen

	various other chefs running on partner orgs infrastructure

Scheduled runs

Chefs scripts can be scheduled to run automatically on a periodic basis, e.g.,
once a month. In between runs, chef scripts stay dormant (daemonized).
Scheduled chefs run by default with the --stage argument in order not to
accidentally overwrite the currently active content tree on Studio with a broken one.
If the channel content is relatively unchanged and raises no flags for review,
the staged tree will be ACTIVATED, and the channel PUBLISHed automatically as well.

Chef inventory

In order to keep track of all the sushi chefs (30+ and growing), SushOps people
maintain this spreadsheet listing and keep it up-to-date for all chefs:

	chef_name, short, unique identified, e.g., khan_academy_en

	chef repo url

	command necessary to run this chef, e.g., ./kachef.py ... lang=en

	scheduled run settings (crontab format)

This spreadsheet is used by humans as an inventory of the chef scripts currently
in operation. The automation scripts use the same data to provision chef scripts
environments, and setting up scheduling for them on the LE cheffing servers.

SushOps tooling and automation

Some of the more repetitive system administration tasks have been automated using
fab commands.

fab -R cloud-kitchen setup_chef:chef_name # clones the chef_name repo and installs requirements
fab -R cloud-kitchen update:chef_name # git fetch and git reset --hard to get latest chef code
fab -R cloud-kitchen run_chef:chef_name # runs the chef
fab -R cloud-kitchen schedule_chef:chef_name # set up chef to run as cronjob

You can import the reusable fab commands from ricecooker.utils.fabfile. [WIP]

Command line interface

This document describes logic ricecooker uses to parse command line arguments.
Under normal use cases you shouldn’t need modify the command line parsing, but
you need to understand how argparse works if you want to add new command line
arguments for your chef script.

Summary

A sushi chef script using the new API looks like this:

#!/usr/bin/env python
...
...
class MySushiChef(BaseChef): # or SushiChef to support remote monitoring
 def get_channel(**kwargs)` -> ChannelNode (bare channel, used just for info)
 ...
 def construct_channel(**kwargs) -> ChannelNode (with populated Tree)
 ...
...
...
if __name__ == '__main__':
 chef = MySushiChef()
 chef.main()

Flow diagram

The call to chef.main() results in the following sequence of six calls:

MySushiChef -----extends----> BaseChef commands.uploadchannel
--------------------------- ----------------------- -----------------------
 1. main()
 2. parse_args_and_options()
 3. run(args, options)
 4. uploadchannel(chef, *args, **options)
 ...
5. get_channel(**kwargs)
 ...
6. construct_channel(**kwargs)
 ...
 ...
 DONE

Changes

Old uploadchannel API (a.k.a. compatibility mode)

	pass in chef script file as "<file_path>" to uploadchannel

	uploadchannel calls the function contruct_channel defined in the chef script

New uploadchannel API

	The chef script defines subclass of riececooker.chefs.SushiChef that implement
the methods get_channel and construct_channel:

class MySushiChef(riececooker.chefs.SushiChef):
 def get_channel(**kwargs)` -> ChannelNode (bare channel, used just for info)
 ...
 def construct_channel(**kwargs): --> ChannelNode (with populated Tree)
 ...

	Each chef script is a standalone python executable.
The main method of the chef instance is the entry point used by a chef script:

#!/usr/bin/env python
...
...
...
if __name__ == '__main__':
 chef = MySushiChef()
 chef.main()

	The __init__ method of the sushi chef class configures an argparse parser
(BaseChef creates self.arg_parser and each class adds to this shared parser
its own command line arguments.)

	The main method of the class parses the command line arguments and calls
the run method (or the deamon_mode method.)

class BaseChef():
 ...
 def main(self):
 args, options = self.parse_args_and_options()
 self.run(args, options)

	The chef’s run method calls uploadchannel (or uploadchannel_wrapper)

class BaseChef():
 ...
 def run(self, args, options):
 ...
 uploadchannel(self, **args.__dict__, **options)

note the chef instance is passed as the first argument, and not path.

	The uploadchannel function expects the sushi chef class to implement the
following two methods:

	get_channel(**kwargs): returns a ChannelNode (previously called create_channel)

	as an alternative, if MySushiChef has a channel_info attribute (a dict)
then the default SushiChef.get_channel will create the channel from this info

	construct_channel(**kwargs): create the channel and build node tree

	Additionally, the MySushiChef class can implement the following optional methods
that will be called as part of the run

	__init__: if you want to add custom chef-specific command line arguments using argparse

	pre_run: if you need to do something before chef run starts (called by run)

	run: in case you want to call uploadchannel yourself

Compatibility mode

Calling ricecooker as a module (python -m ricecooker uploadchannel oldchef.py ...)
will run the following code in ricecooker.__main__.py:

from ricecooker.chefs import BaseChef
if __name__ == '__main__':
 chef = BaseChef(compatibility_mode=True)
 chef.main()

The BaseChef class with compatibility_mode=True proxies call to its construct_channel
method to the function construct_channel in oldchef.py.
The call to chef.main() results in the following sequence of events:

oldchef.py BaseChef(compat mode) commands.uploadchannel
--------------------------- ----------------------- -----------------------
 1. main()
 2. parse_args_and_options()
 3. run(args, options)
 4. uploadchannel(chef, *args, **options)
 ...
 ...
 5. construct_channel(**kwargs)
5'. construct_channel(**kwargs)
 ...
 ...
 DONE

Logging and progress reporting to SushiBar server is not supported in compatibility mode.

Args, options, and kwargs

There are three types of arguments involved in a chef run:

	args (dict): command line args as parsed by the sushi chef class and its parents

	BaseChef: the method BaseChef.__init__ configures argparse for the following:

	compress, download_attempts, prompt, publish, reset, resume,
stage, step, thumbnails, token, update, verbose, warn

	in compatibility mode, also handles uploadchannel and chef_script positional arguments

	SushiChef:

	daemon = Runs in daemon mode

	nomonitor = Disable SushiBar progress monitoring

	MySushiChef: the chef’s __init__ method can define additional cli args

	options (dict): additional [OPTIONS…] passed at the end of the command line

	used for compatibility mode with old rieceooker API (python -m ricecooker uploadchannel ... key=value)

	kwargs (dict): chef-specific keyword arguments not handled by ricecooker’s uploadchannel method

	the chef’s run method makes the call uploadchannel(self, **args.__dict__, **options)
while the definition of uploadchannel looks like uploadchannel(chef, verbose=False, update=False, ... stage=False, **kwargs)
so kwargs contains a mix of both args and options that are not
explicitly expected by the uploadchannel function

	The function uploadchannel will pass **kwargs on to the chef’s
get_channel and construct_channel methods as part of the chef run.

Daemon mode

In daemon mode, we open a ControlWebSocket connection with the SushiBar and
wait for commands.

When a command comes in on the control channel, it looks like this:

 message = {"command":"start", "args":{...}, "options":{...}}

Then the handler ControlWebSocket.on_message will start a new run:

 args.update(message['args']) # remote arguments overwrite ricecooker cli args
 options.update(message['options']) # remote options overwrite cli options
 chef.run(args, options)

After finishing the run, a chef started with the --daemon option remains connected
to the SushiBar server and listens for more commands.

Contributing

Contributions to this project are welcome and are in fact greatly appreciated!
Every little bit helps and credit will always be given. Whether you’re a junior
Python programmer looking for a open source project to contribute to, an advanced
programmer that can help us make ricecooker more efficient, we’d love to hear
from you. We’ve outlined below some of the ways you can contribute.

Types of Contributions

Report Bugs

Report bugs at https://github.com/learningequality/ricecooker/issues

If you are reporting a bug, please include:

	Which version of ricecooker you’re using.

	Which operating system you’re using (name and version).

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open game for community contributors.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

The ricecooker library can always use more documentation. You can contribute
fixes and improvements to the official ricecooker docs, add docstrings to code,
or write a blog post or article and share your experience using ricecooker.

Submit Feedback

The best way to send us your feedback is to file an issue at
https://github.com/learningequality/ricecooker/issues.

If you are proposing a new feature:

	Explain in detail how it would work.

	Try to keep the scope as narrow as possible to make it easier to implement.

	Remember this is a volunteer-driven project, and contributions are welcome :)

Getting Started!

Ready to contribute? In order to work on the ricecooker code you’ll first need
to make you have Python 3 [https://www.python.org/downloads/] on your computer.
You’ll also need to install the Python package pip [https://pypi.python.org/pypi/pip]
if you don’t have it already.

Here are the steps for setting up ricecooker for local development:

	Fork the ricecooker repo on GitHub.

	Clone your fork of the repository locally, and go into the ricecooker directory::

git clone git@github.com:<your-github-username>/ricecooker.git
cd ricecooker/

	Create a Python virtual environment for this project (optional, but recommended):

	Install the virtualenv package using the command

pip install virtualenv

	The next steps depends if you’re using a UNIX system (Mac/Linux) or Windows:

	For UNIX operating systems:

	Create a virtual env called venv in the current directory using the
command:

virtualenv -p python3 venv

	Activate the virtualenv called venv by running:

source venv/bin/activate

Your command prompt will change to indicate you’re working inside venv.

	For Windows systems:

	Create a virtual env called venv in the current directory using the
following command:

virtualenv -p C:/Python36/python.exe venv

You may need to adjust the -p argument depending on where your version
of Python is located. Note you’ll need Python version 3.4 or higher.

	Activate the virtualenv called venv by running:

.\venv\Scripts\activate

	Install the ricecooker code in the virtual environment using these commands::

pip install -e .

	Create a branch for local development::

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 linter rules
and the ricecooker test suite, including testing other Python versions with tox::

flake8 ricecooker tests
pytest
tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub::

git add .
git commit -m "A detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Open a pull request through the GitHub web interface.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.md.

	The pull request should work for Python 3.4, 3.5. Check
https://travis-ci.com/learningequality/ricecooker/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests, you can specify a particular module name::

$ py.test tests.test_licenses

Credits

	Jordan Yoshihara <jordan@learningequality.org>

	Aron Asor <aron@learningequality.org>

	Jamie Alexandre <jamie@learningequality.org>

	Benjamin Bach <ben@learningequality.org>

	Ivan Savov <ivan@learningequality.org>

	David Hu <davidhu@learningequality.org>

	Kevin Ollivier <kevin@learningequality.org>

	Alejandro Martinez Romero <mara80@gmail.com>

Ricecooker Python API

	ricecooker package
	ricecooker.chefs module

	ricecooker.classes module

	ricecooker.commands module

	ricecooker.config module

	ricecooker.exceptions module

	ricecooker.managers module

	ricecooker.sushi_bar_client module

	ricecooker.utils module

	Module contents

	utils package
	ricecooker.utils.browser module

	ricecooker.utils.caching module

	ricecooker.utils.data_writer module

	ricecooker.utils.downloader module

	ricecooker.utils.html module

	ricecooker.utils.html_writer module

	ricecooker.utils.jsontrees module

	ricecooker.utils.libstudio module

	ricecooker.utils.linecook module

	ricecooker.utils.metadata_provider module

	ricecooker.utils.path_builder module

	ricecooker.utils.paths module

	ricecooker.utils.pdf module
	PDF documentation
	PDF splitter

	Accessibility notes

	ricecooker.utils.tokens module

	ricecooker.utils.zip module

	Module contents

ricecooker package

ricecooker.chefs module

ricecooker.classes module

ricecooker.commands module

ricecooker.config module

ricecooker.exceptions module

	
exception ricecooker.exceptions.FileNotFoundException(*args, **kwargs)

	Bases: Exception [https://docs.python.org/3.6/library/exceptions.html#Exception]

FileNotFoundException: raised when file path is not found

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception ricecooker.exceptions.InvalidCommandException(*args, **kwargs)

	Bases: Exception [https://docs.python.org/3.6/library/exceptions.html#Exception]

InvalidCommandException: raised when unrecognized command is entered

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception ricecooker.exceptions.InvalidFormatException(*args, **kwargs)

	Bases: Exception [https://docs.python.org/3.6/library/exceptions.html#Exception]

InvalidFormatException: raised when file format is unrecognized

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception ricecooker.exceptions.InvalidNodeException(*args, **kwargs)

	Bases: Exception [https://docs.python.org/3.6/library/exceptions.html#Exception]

InvalidNodeException: raised when node is improperly formatted

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception ricecooker.exceptions.InvalidQuestionException(*args, **kwargs)

	Bases: Exception [https://docs.python.org/3.6/library/exceptions.html#Exception]

InvalidQuestionException: raised when question is improperly formatted

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception ricecooker.exceptions.InvalidUsageException(*args, **kwargs)

	Bases: Exception [https://docs.python.org/3.6/library/exceptions.html#Exception]

InvalidUsageException: raised when command line syntax is invalid

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception ricecooker.exceptions.UnknownContentKindError(*args, **kwargs)

	Bases: Exception [https://docs.python.org/3.6/library/exceptions.html#Exception]

UnknownContentKindError: raised when content kind is unrecognized

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception ricecooker.exceptions.UnknownFileTypeError(*args, **kwargs)

	Bases: Exception [https://docs.python.org/3.6/library/exceptions.html#Exception]

UnknownFileTypeError: raised when file type is unrecognized

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception ricecooker.exceptions.UnknownLicenseError(*args, **kwargs)

	Bases: Exception [https://docs.python.org/3.6/library/exceptions.html#Exception]

UnknownLicenseError: raised when license is unrecognized

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception ricecooker.exceptions.UnknownQuestionTypeError(*args, **kwargs)

	Bases: Exception [https://docs.python.org/3.6/library/exceptions.html#Exception]

UnknownQuestionTypeError: raised when question type is unrecognized

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
ricecooker.exceptions.raise_for_invalid_channel(channel)

	

ricecooker.managers module

ricecooker.sushi_bar_client module

ricecooker.utils module

There is separate documentation for the utilities.

Module contents

utils package

ricecooker.utils.browser module

	
ricecooker.utils.browser.preview_in_browser(directory, filename='index.html', port=8282)

	

ricecooker.utils.caching module

ricecooker.utils.data_writer module

ricecooker.utils.downloader module

ricecooker.utils.html module

ricecooker.utils.html_writer module

ricecooker.utils.jsontrees module

ricecooker.utils.libstudio module

ricecooker.utils.linecook module

ricecooker.utils.metadata_provider module

ricecooker.utils.path_builder module

	
class ricecooker.utils.path_builder.PathBuilder(channel_name=None)

	Bases: object [https://docs.python.org/3.6/library/functions.html#object]

Class for formatting paths to write to DataWriter.

	
channel_name = None

	

	
go_to_parent_folder()

	Go back one level in path
Args: None
Returns: last item in path

	
open_folder(path_item)

	Add item to path
Args: path_item: (str) item to add to path
Returns: None

	
path = None

	

	
reset()

	Clear path
Args: None
Returns: None

	
set(*path)

	Set path from root
Args: path: (str) items to add to path
Returns: None

ricecooker.utils.paths module

	
ricecooker.utils.paths.build_path(levels)

	make a linear directory structure from a list of path levels names
levels = [“chefdir”, “trees”, “test”]
builds ./chefdir/trees/test/

	
ricecooker.utils.paths.dir_exists(filepath)

	

	
ricecooker.utils.paths.file_exists(filepath)

	

	
ricecooker.utils.paths.get_name_from_url(url)

	get the filename from a url
url = http://abc.com/xyz.txt
get_name_from_url(url) -> xyz.txt

	
ricecooker.utils.paths.get_name_from_url_no_ext(url)

	get the filename without the extension name from a url
url = http://abc.com/xyz.txt
get_name_from_url(url) -> xyz

ricecooker.utils.pdf module

There is detailed documentation available on the PDF tool.

	PDF documentation
	PDF splitter
	Split into chapters

	Split into chapters and subchapters

	Accessibility notes

ricecooker.utils.tokens module

ricecooker.utils.zip module

	
ricecooker.utils.zip.create_predictable_zip(path)

	Create a zip file with predictable sort order and metadata so that MD5 will
stay consistent if zipping the same content twice.
:param path: absolute path either to a directory to zip up, or an existing zip file to convert.
:type path: str

Returns: path (str) to the output zip file

	
ricecooker.utils.zip.write_file_to_zip_with_neutral_metadata(zfile, filename, content)

	Write the string content to filename in the open ZipFile zfile.
:param zfile: open ZipFile to write the content into
:type zfile: ZipFile
:param filename: the file path within the zip file to write into
:type filename: str
:param content: the content to write into the zip
:type content: str

Returns: None

Module contents

PDF Utils

The module ricecooker.utils.pdf contains helper functions for manipulating PDFs.

PDF splitter

When importing source PDFs like books that is a very long documents (100+ pages),
it is better for Kolibri user experience to split them into multiple shorter PDF
content nodes.

The PDFParser class in ricecooker.utils.pdf is a wrapper around the PyPDF2
library that allows us to split long PDF documents into individual chapters,
based on the information available in the PDF’s table of contents.

Split into chapters

Here is how to split a PDF document located at pdf_path, which can be either
a local path or a URL:

from ricecooker.utils.pdf import PDFParser

pdf_path = '/some/local/doc.pdf' or 'https://somesite.org/some/remote/doc.pdf'
with PDFParser(pdf_path) as pdfparser:
 chapters = pdfparser.split_chapters()

The output chapters is list of dictionaries with title and path attributes:

[
 {'title':'First chapter', 'path':'downloads/doc/First-chapter.pdf'},
 {'title':'Second chapter', 'path':'downloads/doc/Second-chapter.pdf'},
 ...
]

Use this information to create individual DocumentNodes for each PDF and store
them in a TopicNode that corresponds to the book:

from ricecooker.classes import nodes, files

book_node = nodes.TopicNode(title='Book title', description='Book description')
for chapter in chapters:
 chapter_node = nodes.DocumentNode(
 title=chapter['title'],
 files=files.DocumentFile(chapter['path']),
 ...
)
 book_node.add_child(chapter_node)

By default, the split PDFs are saved in the directory ./downloads. You can customize
where the files are saved by passing the optional argument directory when initializing
the PDFParser class, e.g., PDFParser(pdf_path, directory='somedircustomdir').

The split_chapters method uses get_toc method internally to obtain the list
of page ranges for each chapter. Use pdfparser.get_toc() to inspect the PDF’s
table of contents. The table of contents data returned by the get_toc method
has the following format:

[
 {'title': 'First chapter', 'page_start': 0, 'page_end': 10},
 {'title': 'Second chapter', 'page_start': 10, 'page_end': 20},
 ...
]

If the page ranges automatically detected form the PDF’s table of contents are
not suitable for the document you’re processing, or if the PDF document does not
contain table of contents information, you can manually create the title and
page range data and pass it as the jsondata argument to the split_chapters().

page_ranges = pdfparser.get_toc()
possibly modify/customize page_ranges, or load from a manually created file
chapters = pdfparser.split_chapters(jsondata=page_ranges)

Split into chapters and subchapters

By default the get_toc will detect only the top-level document structure,
which might not be sufficient to split the document into useful chunks.
You can pass the subchapters=True optional argument to the get_toc() mothod
to obtain a two-level hierarchy of chapters and subchapter from the PDF’s TOC.

For example, if the table of contents of textbook PDF has the following structure:

 Intro
 Part I
 Subchapter 1
 Subchapter 2
 Part II
 Subchapter 21
 Subchapter 22
 Conclusion

then calling pdfparser.get_toc(subchapters=True) will return the following
chapter-subchapter tree structure:

[
 { 'title': 'Part I', 'page_start': 0, 'page_end': 10,
 'children': [
 {'title': 'Subchapter 1', 'page_start': 0, 'page_end': 5},
 {'title': 'Subchapter 2', 'page_start': 5, 'page_end': 10}
]},
 { 'title': 'Part II', 'page_start': 10, 'page_end': 20,
 'children': [
 {'title': 'Subchapter 21', 'page_start': 10, 'page_end': 15},
 {'title': 'Subchapter 22', 'page_start': 15, 'page_end': 20}
]},
 { 'title': 'Conclusion', 'page_start': 20, 'page_end': 25 }
]

Use the split_subchapters method to process this tree structure and obtain the
tree of title and paths:

[
 { 'title': 'Part I',
 'children': [
 {'title': 'Subchapter 1', 'path': '/tmp/0-0-Subchapter-1.pdf'},
 {'title': 'Subchapter 2', 'path': '/tmp/0-1-Subchapter-2.pdf'},
]},
 { 'title': 'Part II',
 'children': [
 {'title': 'Subchapter 21', 'path': '/tmp/1-0-Subchapter-21.pdf'},
 {'title': 'Subchapter 22', 'path': '/tmp/1-1-Subchapter-22.pdf'},
]},
 { 'title': 'Conclusion', 'path': '/tmp/2-Conclusion.pdf'}
]

You’ll need to create a TopicNode for each chapter that has children and
create DocmentNodes for each of the children of that chapter.

Accessibility notes

Do not use the PDFParser for tagged PDFs because splitting and processing loses
the accessibility features of the original PDF document.

History

0.6.23 (2018-11-08)

	Updated le-utils and pressurcooker dependencies to latest version

	Added support for ePub files (EPubFile s can be added of DocumentNode s)

	Added tag support

	Changed default value for STUDIO_URL to api.studio.learningequality.org

	Added aggregator and provider fields for content nodes

	Various bugfixes to image processing in exercises

	Changed validation logic to use self.filename to check file format is in self.allowed_formats

	Added is_youtube_subtitle_file_supported_language helper function to support importing youtube subs

	Added srt2vtt subtitles conversion

	Added static assets downloader helper method in utils.downloader.download_static_assets

	Added LineCook chef functions to --generate CSV from directory structure

	Fixed the always randomize=True bug

	Docs: general content node metadata guidelines

	Docs: video compression instructions and helper scripts convertvideo.bat and convertvideo.sh

0.6.17 (2018-04-20)

	Added support for role attribute on ConentNodes (currently coach || learner)

	Update pressurecooker dependency (to catch compression errors)

	Docs improvements, see https://github.com/learningequality/ricecooker/tree/master/docs

0.6.15 (2018-03-06)

	Added support for non-mp4 video files, with auto-conversion using ffmpeg. See git diff b1d15fa 87f2528

	Added CSV exercises workflow support to LineCook chef class

	Added –nomonitor CLI argument to disable sushibar functionality

	Defined new ENV variables:
* PHANTOMJS_PATH: set this to a phantomjs binary (instead of assuming one in node_modules)
* STUDIO_URL (alias CONTENTWORKSHOP_URL): set to URL of Kolibri Studio server where to upload files

	Various fixes to support sushi chefs

	Removed minimize_html_css_js utility function from ricecooker/utils/html.py
to remove dependency on css_html_js_minify and support Py3.4 fully.

0.6.9 (2017-11-14)

	Changed default logging level to –verbose

	Added support for cronjobs scripts via –cmdsock (see docs/daemonization.md)

	Added tools for creating HTML5Zip files in utils/html_writer.py

	Added utility for downloading HTML with optional js support in utils/downloader.py

	Added utils/path_builder.py and utils/data_writer.py for creating souschef archives
(zip archive that contains files in a folder hierarchy + Channel.csv + Content.csv)

0.6.7 (2017-10-04)

	Sibling content nodes are now required to have unique source_id

	The field copyright_holder is required for all licenses other than public domain

0.6.7 (2017-10-04)

	Sibling content nodes are now required to have unique source_id

	The field copyright_holder is required for all licenses other than public domain

0.6.6 (2017-09-29)

	Added JsonTreeChef class for creating channels from ricecooker json trees

	Added LineCook chef class to support souschef-based channel workflows

0.6.4 (2017-08-31)

	Added language attribute for ContentNode (string key in internal repr. defined in le-utils)

	Made language a required attribute for ChannelNode

	Enabled sushibar.learningequality.org progress monitoring by default
Set SUSHIBAR_URL env. var to control where progress is reported (e.g. http://localhost:8001)

	Updated le-utils and pressurecooker dependencies to latest

0.6.2 (2017-07-07)

	Clarify ricecooker is Python3 only (for now)

	Use https:// and wss:// for SuhiBar reporting

0.6.0 (2017-06-28)

	Remote progress reporting and logging to SushiBar (MVP version)

	New API based on the SuchiChef classes

	Support existing old-API chefs in compatibility mode

0.5.13 (2017-06-15)

	Last stable release before SushiBar functionality was added

	Renamed –do-not-activate argument to –stage

0.1.0 (2016-09-30)

	First release on PyPI.

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 ricecooker	

 	
 	
 ricecooker.classes	

 	
 	
 ricecooker.exceptions	

 	
 	
 ricecooker.managers	

 	
 	
 ricecooker.utils.browser	

 	
 	
 ricecooker.utils.path_builder	

 	
 	
 ricecooker.utils.paths	

 	
 	
 ricecooker.utils.zip	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | O
 | P
 | R
 | S
 | U
 | W

A

 	
 	args (ricecooker.exceptions.FileNotFoundException attribute)

 	(ricecooker.exceptions.InvalidCommandException attribute)

 	(ricecooker.exceptions.InvalidFormatException attribute)

 	(ricecooker.exceptions.InvalidNodeException attribute)

 	(ricecooker.exceptions.InvalidQuestionException attribute)

 	(ricecooker.exceptions.InvalidUsageException attribute)

 	(ricecooker.exceptions.UnknownContentKindError attribute)

 	(ricecooker.exceptions.UnknownFileTypeError attribute)

 	(ricecooker.exceptions.UnknownLicenseError attribute)

 	(ricecooker.exceptions.UnknownQuestionTypeError attribute)

B

 	
 	build_path() (in module ricecooker.utils.paths)

C

 	
 	channel_name (ricecooker.utils.path_builder.PathBuilder attribute)

 	
 	create_predictable_zip() (in module ricecooker.utils.zip)

D

 	
 	dir_exists() (in module ricecooker.utils.paths)

F

 	
 	file_exists() (in module ricecooker.utils.paths)

 	
 	FileNotFoundException

G

 	
 	get_name_from_url() (in module ricecooker.utils.paths)

 	
 	get_name_from_url_no_ext() (in module ricecooker.utils.paths)

 	go_to_parent_folder() (ricecooker.utils.path_builder.PathBuilder method)

I

 	
 	InvalidCommandException

 	InvalidFormatException

 	
 	InvalidNodeException

 	InvalidQuestionException

 	InvalidUsageException

O

 	
 	open_folder() (ricecooker.utils.path_builder.PathBuilder method)

P

 	
 	path (ricecooker.utils.path_builder.PathBuilder attribute)

 	
 	PathBuilder (class in ricecooker.utils.path_builder)

 	preview_in_browser() (in module ricecooker.utils.browser)

R

 	
 	raise_for_invalid_channel() (in module ricecooker.exceptions)

 	reset() (ricecooker.utils.path_builder.PathBuilder method)

 	ricecooker (module), [1]

 	ricecooker.classes (module)

 	ricecooker.exceptions (module)

 	
 	ricecooker.managers (module)

 	ricecooker.utils.browser (module)

 	ricecooker.utils.path_builder (module)

 	ricecooker.utils.paths (module)

 	ricecooker.utils.zip (module)

S

 	
 	set() (ricecooker.utils.path_builder.PathBuilder method)

U

 	
 	UnknownContentKindError

 	UnknownFileTypeError

 	
 	UnknownLicenseError

 	UnknownQuestionTypeError

W

 	
 	with_traceback() (ricecooker.exceptions.FileNotFoundException method)

 	(ricecooker.exceptions.InvalidCommandException method)

 	(ricecooker.exceptions.InvalidFormatException method)

 	(ricecooker.exceptions.InvalidNodeException method)

 	(ricecooker.exceptions.InvalidQuestionException method)

 	(ricecooker.exceptions.InvalidUsageException method)

 	(ricecooker.exceptions.UnknownContentKindError method)

 	(ricecooker.exceptions.UnknownFileTypeError method)

 	(ricecooker.exceptions.UnknownLicenseError method)

 	(ricecooker.exceptions.UnknownQuestionTypeError method)

 	
 	write_file_to_zip_with_neutral_metadata() (in module ricecooker.utils.zip)

Video compression tools

Importing video files into Kolibri requires special considerations about the file
size of the video resources that will be imported.

Below are some general guidelines for importing video files:

	Use the .mp4 file format

	Use the H.264 (a.k.a. x264) video codec to ensure video will play in web browsers

	Use the aac or mp3 audio codec

	Use compression

	Short videos (5-10 mins long) should be roughly less then 15MB

	Longer video lectures (1 hour long) should not be larger than 200MB

	High-resolution videos should be converted to lower resolution formats:
Here are some recommended choices for video vertical resolution:

	Use max height of 480 for videos that work well in low resolution (most videos)

	Use max height of 720 for high resolution videos (lectures with writing on board)

Using video compression and low resolutions is important for the context of use.
Think of the learners and the device they will be using to view the videos.
Consider also the overall size of the channel—how much storage space will be
required for the entire collection of videos?

Let’s now look at compression tools that you can use to ensure a good video
experience for all Kolibri users, regardless of their device.

Automated conversion

The ricecooker library can handle the video compressions for you if you specify
the --compress command line argument to the chef script, e.g. python chef.py ... --compress.
Under the hood, the ffmpeg video conversion program will be called to compress
video files before uploading them to Kolibri Studio. Specifying --compress on
the command line will use the following default settings:

ffmpeg -i inputfile.mp4 \
 -b:a 32k -ac 1 \
 -vf scale="'w=-2:h=trunc(min(ih,480)/2)*2'" \
 -crf 32 \
 -profile:v baseline -level 3.0 -preset slow -v error -strict -2 -stats \
 -y outputfile.mp4

This command takes the inputfile.mp4 and outputs the file outputfile.mp4 that
has the following transformations applied to it:

	Limits the audio codec to 32k/sec

	Scale the video to max-height of 480 pixels

	Compress the video with CRF of 32 (constant rate factor)

To overwrite these defaults, chef authors can pass the argument ffmpeg_settings (dict),
when creating VideoFile object, and specify these options: crf, max_height, and max_width.

Manual conversion

For optimal control of the compression options, users should perform the conversion
and compression steps before uploading their videos to Kolibri Studio.
We highly recommend the command line tool ffmpeg [https://www.ffmpeg.org/].
You’ll need to use it through the command prompt (Terminal in linux, CMD in Windows).
Any video conversion and compression operation can be performed by setting the
appropriate parameters.

Installing ffmpeg

Before proceeding, please go and download the ffmpeg program for you OS:

Links:

	Homepage: https://www.ffmpeg.org/

	Downloads for windows users: https://ffmpeg.zeranoe.com/builds/
Choose 64bit “static” version to download, unzip the archive, then go to the folder
called bin/ inside the zip file. Copy the files ffmpeg.exe and ffprobe.exe
to the folder on your computer where your videos are stored.

To check the installation was successful you can open a command line prompt
(cmd.exe on Windows [https://www.howtogeek.com/wp-content/uploads/2017/02/Windows_106-650x300.jpg],
or terminal on mac/linux), and try typing in the command:

ffmpeg -h

which will print command help information. You can see the full list command line
options for ffmpeg here: https://www.ffmpeg.org/ffmpeg.html.
Don’t worry you won’t need to use all of them.

If you see the error message “ffmpeg is not recognized as an internal or external command,
operable program or batch file,” you will have to change directory to the folder where you
saved the program files ffmpeg.exe and ffprobe.exe (e.g. use cd Desktop if saved
on the desktop or cd %HOMEPATH%\Documents to go to your Documents folder).

Looking around with ffprobe

Equally useful is the command ffprobe which prints detailed information for
any video files. To illustrate the usefulness, let’s see what info ffprobe
can tells us about some video files downloaded from the internet. You can download
the same files from here [https://archive.org/details/CM_National_Rice_Cooker_1982]
if you want to follow along (download the three different video formats available
in the sidebar: ogv, mpg, and mp4)

To check what’s in the file CM_National_Rice_Cooker_1982.ogv use the command:

ffprobe CM_National_Rice_Cooker_1982.ogv

Input #0, ogg, from 'CM_National_Rice_Cooker_1982.ogv':
 Duration: 00:00:15.03, start: 0.000000, bitrate: 615 kb/s
 Stream #0:0: Video: theora, yuv420p,
 400x300 [SAR 1:1 DAR 4:3], 29.97 fps, 29.97 tbr, 29.97 tbn, 29.97 tbc
 Stream #0:1: Audio: vorbis, 44100 Hz, stereo, fltp, 128 kb/s

The video codec is theora and the audio codec is vorbis, so this video will
need to be converted before uploading to Studio.

Similarly we can check the codecs for CM_National_Rice_Cooker_1982.mpg using

ffprobe CM_National_Rice_Cooker_1982.mpg

Input #0, mpeg, from 'CM_National_Rice_Cooker_1982.mpg':
Duration: 00:00:15.02, start: 0.233367, bitrate: 6308 kb/s
 Stream #0:0[0x1e0]: Video: mpeg2video (Main), yuv420p(tv, smpte170m, top first),
 720x480 [SAR 8:9 DAR 4:3], 29.97 fps, 29.97 tbr, 90k tbn, 59.94 tbc
 Stream #0:1[0x1c0]: Audio: mp2, 48000 Hz, stereo, s16p, 224 kb/s

The video codec is mpeg2video and the audio codec is mp2, so this video too
will need to be converted.

Finally, to check the codecs for CM_National_Rice_Cooker_1982.mp4, we use

ffprobe CM_National_Rice_Cooker_1982.mp4

Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'CM_National_Rice_Cooker_1982.mp4':
 Duration: 00:00:15.05, start: -0.012585, bitrate: 835 kb/s
 Stream #0:0(und): Video: h264 (Constrained Baseline) (avc1 / 0x31637661), yuv420p,
 640x480 [SAR 1:1 DAR 4:3], 700 kb/s, 29.97 fps, 29.97 tbr, 30k tbn, 59.94 tbc (default)
 Stream #0:1(und): Audio: aac (LC) (mp4a / 0x6134706D), 44100 Hz, stereo, fltp, 129 kb/s (default)

Here we see the h264 video codec and aac/mp4a audio codec so this file can
be uploaded to Studio as is. These codecs are relatively well supported by
most browsers [https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats].
This video can be uploaded to Kolibri.

Converting files using ffmpeg

Recall the file CM_National_Rice_Cooker_1982.mpg that we downloaded above,
which uses the Kolibri-incompatibe codecs mpeg2video and mp2.
Let’s see how to use the ffmpeg command to convert it to the supported codecs:

ffmpeg -i CM_National_Rice_Cooker_1982.mpg \
 -b:a 32k -ac 1 \
 -vf scale="'w=-2:h=trunc(min(ih,480)/2)*2'" \
 -crf 32 \
 -profile:v baseline -level 3.0 -preset slow -v error -strict -2 -stats \
 -y compressed.mp4

Note the \ character denotes line-continuation and works only on UNIX.
Windows users should put the entire command on a single line:

ffmpeg -i CM_National_Rice_Cooker_1982.mpg -b:a 32k -ac 1 -vf scale="'w=-2:h=trunc(min(ih,480)/2)*2'" -crf 32 -profile:v baseline -level 3.0 -preset slow -v error -strict -2 -stats -y compressed.mp4

This command will run for some time (video transcoding takes a lot of CPU power).
In the end, if you check using ffprobe compressed.mp4, you’ll see that the
converted output file has video codec h264 and audio codec aac.
The resolution 720x480 and bitrate 534 kb/s are also very good parameters.
Note the file size of compressed.mp4 is 1MB which is twice smaller than the
file mp4 file which we obtained directly form the web CM_National_Rice_Cooker_1982.mp4.
Clearly the compression option -crf 32 had an effect.

The video compressed.mp4 is now ready for upload to Studio!

Using the ffmpeg helper scripts

We provide a helper script to help run the ffmpeg command. The instructions are different
depending if your operating systems is Windows or Mac/Linux:

	For Windows users, download the file convertvideo.bat
and save it to your computer. Make sure the extension is .bat (Windows batch file).
Put the convertvideo.bat file in the same folder where you copied ffmpeg.exe.
To convert inputfile.mp4 to outputfile.mp4 using the conversion script, open a
command line prompt, navigate to the folder where convertvideo.bat and ffmpeg.exe
are stored, and type the following command:

convertvideo.bat inputfile.mp4 outputfile.mp4

See https://youtu.be/oKbCbuDlRmY [https://www.youtube.com/watch?v=oKbCbuDlRmY]
for a video walkthrough of the steps and example usage of the batch script.

	Linux and Mac users should download convertvideo.sh,
save it to the folder where all the videos are. Next open a command prompt and change
directory to that folder. Make the script executable using chmod u+x convertvideo.sh,
then you can start converting videos using:

./convertvideo.sh inputfile.mp4 outputfile.mp4

The conversion scripts provided are just wrappers for the ffmpeg command, to make it
easier for you so you won’t have to remember all the command line options. If you need
to adjust the conversion parameters, you edit the scripts—they are ordinary text files,
so you can edit them with notepad.

Note video conversion takes a long time, so be prepared to get a coffee or two.

HandBrake

If you don’t have many videos to convert, you can use HandBrake [https://handbrake.fr/],
which is a video conversion tool with a graphical user interface. Handbrake uses
ffmpeg under the hood, so the same compression results can be achieved as with
the more technical options presented above.

Here are steps for converting videos using HandBrake:

	Download and install handbrake from here https://handbrake.fr/

	Open the video file you want to compress.

	From the presets menu, choose Web > Gmail Medium 5 Minutes 480p30

	Set the output filename (e.g. you could use the same as input filename,
but append _compressed.mp4). Make sure to use the .mp4 extension.

	Click the Start Encode button.

[image: _images/handbrake_steps.png]HandBrake steps all in one

Screencast showing the above steps: https://www.youtube.com/watch?v=83MdDLaFXfs

The Web > Gmail Medium 5 Minutes 480p30 preset will use the x264 video codec,
aac audio codec, and 480 vertical resolution, and compression rate crf=23.
The 480 vertical resolution is a good choice for most videos, but if you find the compressed output to be too low quality, you can try the preset
Web > Gmail Large 3 Minutes 720p30, which will result in larger videos files
with 720 vertical resolution.

If your channel contains many videos, or very long videos, you should consider
increasing the “Constant Rate Factor” compression parameter in the Video settings.
Using the value RF=32
will result in highly compressed videos, with very small file sizes.

Experimenting

Since every content source is unique, we recommend that you experiment with
different compression options. The command line tool ffmpeg offers a very
useful option called crf which stands for Constant Rate Factor.
Setting this single parameter allows for controlling overall video quality.
For example, setting crf=24 produces high quality video (and possibly large file size),
crf=28 is a mid-range quality, and values of crf above 30 produce highly-compressed
videos with small size.

Here are the steps to preview different compression factors in Kolibri:

	Choose a sample video from your collection, let’s call it video.mp4

	Try different compression options for it:

	Create a CRF=24 version using ffmpeg -i video.mp4 ... -crf 24 video_crf24.mp4

	Create a CRF=28 version using ffmpeg -i video.mp4 ... -crf 28 video_crf28.mp4

	Create a CRF=30 version using ffmpeg -i video.mp4 ... -crf 30 video_crf30.mp4

	Upload the original and the compressed version to a Studio channel

	PUBLISH the channel and record the channel token

	Import the channel into a Kolibri instance using the channel token

	Test video playback on different devices (desktop and mobile browsers on all OSs)

New content type: ePub

PR ordering:

	merge le-utils PR first

	release as le-utils 0.2

	update studio/kolibri/ricecooker

	deploy Studio

	backward compatibility policy: must not import content channels containing ePubsupport
on any installation older than 0.7.3 (or whenever conservative content-type import implemented)

	WHY? Otherwise people might download content they can’t render—it’s not a
scenario that will crash Kolibri, but want to avoid unnecessary downloads.

	release ricecooker

	plan release for Kolibri 0.9/0.10/0.11?

Studio

Code

git clone https://github.com/ivanistheone/content-curation
cd content-curation
git checkout feature/ePubsupport

Install

virtualenv -p python2.7 venv
source venv/bin/activate
pip install -r requirements.txt
pip install -r requirements_dev.txt
pip install -U git+https://github.com/ivanistheone/le-utils@feature/ePubsupport
npm install

Need two other tabs start the necessary services:

Start DB
pg_ctl -D /usr/local/var/postgresql@9.6 start
Start Redis
redis-server /usr/local/etc/redis.conf

If starting without previous Studio installation, you’ll need to create DB and
run the steps from Studio README: https://github.com/fle-internal/content-curation

createdb contentcuration
psql
 CREATE USER learningequality with NOSUPERUSER INHERIT NOCREATEROLE CREATEDB LOGIN NOREPLICATION NOBYPASSRLS PASSWORD 'kolibri';
 CREATE DATABASE "contentcuration" WITH TEMPLATE = template0 OWNER = "learningequality";

cd contentcuration
python manage.py makemigrations
python manage.py migrate --settings=contentcuration.dev_settings
python manage.py loadconstants --settings=contentcuration.dev_settings
python manage.py calculateresources --settings=contentcuration.dev_settings --init
python manage.py collectstatic --noinput --settings=contentcuration.dev_settings
python manage.py collectstatic_js_reverse --settings=contentcuration.dev_settings

If you have an existing Studio installation just need to run these:

python manage.py loadconstants --settings=contentcuration.dev_settings

 ***** Loading Constants *****
 Site: 3 constants saved (0 new)
 License: 9 constants saved (0 new)
 FileFormat: 14 constants saved (1 new)
 ContentKind: 6 constants saved (0 new)
 FormatPreset: 17 constants saved (1 new)
 Language: 228 constants saved (0 new)
 ************ DONE. ************

For test instrucrions to run need to load the admin user fixture token.
If you already have an admin user in your DB, you can skip this step, otherwise
you admin user (the user with user id = 1) will get overwritten to a user with
login content@learningequality.org and password admin123:

python manage.py \
 loaddata contentcuration/contentcuration/fixtures/admin_user.json \
 --settings=contentcuration.dev_settings

Now we can load the admin user token 26a51f88ae50f4562c075f8031316eff34c58eb8:

python manage.py \
 loaddata contentcuration/contentcuration/fixtures/admin_user_token.json \
 --settings=contentcuration.dev_settings

Run

python manage.py runserver --settings=contentcuration.dev_settings

You should be able to login at http://127.0.0.1:8000 using content@learningequality.org:admin123.

Ricecooker

Code

git clone https://github.com/ivanistheone/ricecooker.git
cd ricecooker
git checkout feature/ePubsupport
virtualenv -p python3 venv
source venv/bin/activate
pip install -e .

Run ePub test chef

cd docs/tutorial/

expected files to be present:
samplefiles/
└── documents
└── laozi_tao-te-ching.epub

IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
#
DO NOT CONTINUE WITHOUT SETTING THIS ENV VARIABLE
export CONTENTWORKSHOP_URL="http://127.0.0.1:8000"
set -x CONTENTWORKSHOP_URL "http://127.0.0.1:8000"
#
IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
#
./epubchef.py -v --reset --token='26a51f88ae50f4562c075f8031316eff34c58eb8'

Should run w/o errors and produce this link at the end of the run:
http://127.0.0.1:8000/channels/982afe31f3af57b6a5acf21b4ae5bed8/edit

Studio steps:

	Publish the channel big [PUBLISH] button at top right

	Make the channel public using the rightmost button on http://127.0.0.1:8000/channels/administration/
We global now! Let’s go import in Kolibri.

Kolibri

Code

git clone https://github.com/learningequality/kolibri.git
cd kolibri
git checkout feature/ePubsupport
this branch contains main changes from pull/3197=epub_me_good + some minor fixes

Backend

virtualenv -p python2.7 venv
source vevn/bin/activate
pip install -r requirements/dev.txt
pip install -e .
pip install -U git+https://github.com/ivanistheone/le-utils@feature/ePubsupport

Frontend

yarn install

May need to edit package.json if using newer node.js: s/"6.x"/">= 6.x"/
npm rebuild node-sass --python=/usr/bin/python2.7 # partial fix when using py3, but better not use py3... bcs node-gyp is being a difficult

kolibri plugin kolibri.plugins.document_epub_render enable
yarn install # to install document_epub_render dependencies

Run devserver

set -x CENTRAL_CONTENT_DOWNLOAD_BASE_URL "http://127.0.0.1:8000"
yarn run devserver 'localhost:8080'

Kolibri steps:

	Setup facility

	login as a device owner

	import channel

	check the book at: http://localhost:8080/learn/#/topics/c/589553ceb7115e4f8a95daaaa1b8d11f

 _images/content_pipeline_diagram.png
Content Pipeline “ricecooker”

g s

External content
producer or

(Pyhon wapper and () Kolibri Studio
U or spading >
Koo St AP

;) Kolibri App

aggregation g
repositories \/
=2a f

(e.g. KA, PhET)

=
Curation & Conng
These repos Alignment to
expose an APl or g Standards
web UI, which we Y
then write a sushi Lo\ L) e % Legend
chef to parse/pull “Sushi chefs” Manual
content from (custom scripls that pull upload of
scraping, and then use. authored
ricecooker to reate a content

channel, and then updiate t
o0 a reguiar basis)

_images/content_pipeline_diagram1.png
Content Pipeline “ricecooker”

g s

External content
producer or

(Pyhon wapper and () Kolibri Studio
U or spading >
Koo St AP

;) Kolibri App

aggregation g
repositories \/
=2a f

(e.g. KA, PhET)

=
Curation & Conng
These repos Alignment to
expose an APl or g Standards
web UI, which we Y
then write a sushi Lo\ L) e % Legend
chef to parse/pull “Sushi chefs” Manual
content from (custom scripls that pull upload of
scraping, and then use. authored
ricecooker to reate a content

channel, and then updiate t
o0 a reguiar basis)

nav.xhtml

 Table of Contents

 		
 Welcome to the ricecooker docs!

 		
 README

 		
 Overview

 		
 Installation

 		
 Simple chef example

 		
 Next steps

 		
 Further reading

 		
 Tutorial

 		
 Tutorials

 		
 Install

 		
 The ricecooker quick start

 		
 Running the notebooks

 		
 Step 1: Obtain a Studio Authorization Token

 		
 Step 2: Creating a Sushi Chef class

 		
 Creating more nodes

 		
 Languages

 		
 Explore language objects and language codes

 		
 Create chef class

 		
 Example 2: YouTube video with subtitles in multiple languages

 		
 ricecooker exercises

 		
 Running the notebooks

 		
 Creating a Sushi Chef class

 		
 Kolibri content platform

 		
 Supported Content types

 		
 Content import workflows

 		
 Kolibri Studio web interface

 		
 Bulk-importing content programatically

 		
 CSV metadata workflow

 		
 Further reading

 		
 Supported content types

 		
 Audio

 		
 Videos

 		
 Documents

 		
 HTML5Apps

 		
 Exercises

 		
 Extending Kolibri

 		
 Using the ricecooker library

 		
 Step 1: Obtain a Studio Authorization Token

 		
 Step 2: Create a Sushi Chef script

 		
 Ricecooker Chef API

 		
 Chef class attributes

 		
 Construct channel

 		
 Topic nodes

 		
 Content nodes

 		
 Files

 		
 Command line interface

 		
 Step 3: Add more content nodes and files

 		
 Step 4: Adding exercises

 		
 Nodes

 		
 Overview

 		
 Content node metadata

 		
 Usability guidelines

 		
 Licenses

 		
 Languages

 		
 Thumbnails

 		
 Topic nodes

 		
 Content nodes

 		
 Role-based visibility

 		
 Exercise nodes

 		
 Files

 		
 File objects

 		
 Base classes

 		
 Path

 		
 Language

 		
 Audio files

 		
 Document files

 		
 HTMLZip files

 		
 Videos files

 		
 Thumbnail files

 		
 File size limits

 		
 Kolibri Language Codes

 		
 More lookup helper methods

 		
 HTML5App nodes and HTML5Zip files

 		
 Example of HTML5App nodes

 		
 Usability guidelines

 		
 Links and navigation

 		
 HTML Writer utility class

 		
 Static assets download utility

 		
 Starter template

 		
 Exercise and exercise questions

 		
 Installation

 		
 Software prerequisites

 		
 Stable release

 		
 Install from github

 		
 Install from source

 		
 Running chef scripts

 		
 Executable scripts

 		
 Ricecooker CLI

 		
 Extra options

 		
 Resuming interrupted chef runs

 		
 Caching

 		
 Run scripts

 		
 Daemon mode

 		
 Parsing HTML using BeautifulSoup

 		
 Further reading

 		
 CSV Metadata Workflow

 		
 CSV Exercises

 		
 CSV Exercises Workflow

 		
 Exercises.csv

 		
 ExerciseQuestions.csv

 		
 Markdown image paths

 		
 Ordering

 		
 Implementation details

 		
 Writing a SousChef

 		
 Definitions

 		
 Installation

 		
 Getting started

 		
 Downloader

 		
 HTML parsing using BeautifulSoup

 		
 Using the DataWriter

 		
 Step 1: Open a DataWriter

 		
 Step 2: Create a Channel

 		
 Step 3: Add a Folder

 		
 Step 4: Add a File

 		
 Extra Tools

 		
 PathBuilder (ricecooker.utils.path_builder.py)

 		
 Downloader (ricecooker.utils.downloader.py)

 		
 HTMLWriter (ricecooker.utils.html_writer.py)

 		
 Notes for ricecooker library developers

 		
 Supported Python Versions for Chefs

 		
 Computed identifiers

 		
 Channel ID

 		
 Node IDs

 		
 Running chef scripts

 		
 Executable scripts

 		
 Ricecooker CLI

 		
 Extra options

 		
 Resuming interrupted chef runs

 		
 Caching

 		
 Run scripts

 		
 Daemon mode

 		
 Daemon mode

 		
 SushiBar control channel

 		
 Local control channel

 		
 SushOps

 		
 Project management and support

 		
 Cheffing servers

 		
 Scheduled runs

 		
 Chef inventory

 		
 SushOps tooling and automation

 		
 Command line interface

 		
 Summary

 		
 Flow diagram

 		
 Changes

 		
 Old uploadchannel API (a.k.a. compatibility mode)

 		
 New uploadchannel API

 		
 Compatibility mode

 		
 Args, options, and kwargs

 		
 Daemon mode

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Getting Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Ricecooker Python API

 		
 ricecooker package

 		
 ricecooker.chefs module

 		
 ricecooker.classes module

 		
 ricecooker.commands module

 		
 ricecooker.config module

 		
 ricecooker.exceptions module

 		
 ricecooker.managers module

 		
 ricecooker.sushi_bar_client module

 		
 ricecooker.utils module

 		
 Module contents

 		
 utils package

 		
 ricecooker.utils.browser module

 		
 ricecooker.utils.caching module

 		
 ricecooker.utils.data_writer module

 		
 ricecooker.utils.downloader module

 		
 ricecooker.utils.html module

 		
 ricecooker.utils.html_writer module

 		
 ricecooker.utils.jsontrees module

 		
 ricecooker.utils.libstudio module

 		
 ricecooker.utils.linecook module

 		
 ricecooker.utils.metadata_provider module

 		
 ricecooker.utils.path_builder module

 		
 ricecooker.utils.paths module

 		
 ricecooker.utils.pdf module

 		
 ricecooker.utils.tokens module

 		
 ricecooker.utils.zip module

 		
 Module contents

 		
 History

 		
 0.6.23 (2018-11-08)

 		
 0.6.17 (2018-04-20)

 		
 0.6.15 (2018-03-06)

 		
 0.6.9 (2017-11-14)

 		
 0.6.7 (2017-10-04)

 		
 0.6.7 (2017-10-04)

 		
 0.6.6 (2017-09-29)

 		
 0.6.4 (2017-08-31)

 		
 0.6.2 (2017-07-07)

 		
 0.6.0 (2017-06-28)

 		
 0.5.13 (2017-06-15)

 		
 0.1.0 (2016-09-30)

_static/comment-bright.png

_images/handbrake_steps.png
% Handerake 1 .
Fie Tooks Presets Queue Help

£r5
B oyrsons (B sstocums - @) koncss (G o [meves [somwios

presets
Source: sample_video 7204450 (6401450), 29.97 FS, 1 Audio Tracks, 0 Subtile racks
Tte: [1000079 | angle: [1 v| Range: [Chapters v|[1 v| - [T | puntion: 000015
‘Gmail Medium 5 Minutes 450p30 D
Summary | Dimensions | Fiters| Video | Audio | subtitia
Video
Video Codec: [H264028 v
Framerate (FP5y | 30 v
© Constont Framerate acebo Qualty |
® Peak Framerate
Vimeo YouTube HQ 108060 =
Optimise Video: Vimeo YouTube HQ 144050 2.5K
Encoder st % Medun Vimeo YouTube HQ 2160004
Encoder Tune: | None | [FastDecode Vimeo YouTube HQ 720p60
Encoder profie: | Main] Encodertever 31 <
Exra Options:

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

