

Welcome to ricecooker’s documentation!

Contents:

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 ricecooker	

 	
 	
 ricecooker.classes	

 	
 	
 ricecooker.config	

 	
 	
 ricecooker.exceptions	

 	
 	
 ricecooker.managers	

Index

 A
 | C
 | F
 | G
 | I
 | O
 | P
 | R
 | S
 | U

A

 	
 	add_nodes_url() (in module ricecooker.config)

 	
 	authentication_url() (in module ricecooker.config)

C

 	
 	create_channel_url() (in module ricecooker.config)

F

 	
 	file_diff_url() (in module ricecooker.config)

 	file_upload_url() (in module ricecooker.config)

 	
 	FileNotFoundException

 	finish_channel_url() (in module ricecooker.config)

G

 	
 	get_file_store() (in module ricecooker.config)

 	
 	get_restore_path() (in module ricecooker.config)

 	get_storage_path() (in module ricecooker.config)

I

 	
 	init_file_mapping_store() (in module ricecooker.config)

 	InvalidCommandException

 	InvalidFormatException

 	
 	InvalidNodeException

 	InvalidQuestionException

 	InvalidUsageException

O

 	
 	open_channel_url() (in module ricecooker.config)

P

 	
 	publish_channel_url() (in module ricecooker.config)

R

 	
 	raise_for_invalid_channel() (in module ricecooker.exceptions)

 	ricecooker (module)

 	ricecooker.classes (module), [1]

 	
 	ricecooker.config (module)

 	ricecooker.exceptions (module)

 	ricecooker.managers (module)

S

 	
 	set_file_store() (in module ricecooker.config)

U

 	
 	UnknownContentKindError

 	
 	UnknownQuestionTypeError

Credits

Development Lead

	Jordan Yoshihara <jordan@learningequality.org>

Contributors

	Aron Asor <aron@learningequality.org>

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/learningequality/ricecooker/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

ricecooker could always use more documentation, whether as part of the
official ricecooker docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/learningequality/ricecooker/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up ricecooker for local development.

	Fork the ricecooker repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:learningequality/ricecooker.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv ricecooker
$ cd ricecooker/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 ricecooker tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/learningequality/ricecooker/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.te

History

0.1.0 (2016-09-30)

	First release on PyPI.

Installation

Stable release

To install ricecooker, run this command in your terminal:

$ pip install ricecooker

This is the preferred method to install ricecooker, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for ricecooker can be downloaded from the Github repo [https://github.com/jayoshih/ricecooker].

You can either clone the public repository:

$ git clone git://github.com/jayoshih/ricecooker

Or download the tarball [https://github.com/jayoshih/ricecooker/tarball/master]:

$ curl -OL https://github.com/jayoshih/ricecooker/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

ricecooker

	ricecooker package
	Submodules

	ricecooker.classes module

	ricecooker.commands module

	ricecooker.config module

	ricecooker.exceptions module

	ricecooker.managers module

	ricecooker.sample_program module

	Module contents

 # Rice Cooker

A framework for creating channels on [Kolibri Studio](https://contentworkshop.learningequality.org/).

Installation

	[Install pip](https://pypi.python.org/pypi/pip) if you don’t have it already.

	Run pip install ricecooker

	You can now reference ricecooker using import ricecooker in your .py files

Using the Rice Cooker

A sample program has been created [here](https://github.com/learningequality/ricecooker/blob/master/ricecooker/sample_program.py)

	Initializing the Channel

In order for the rice cooker to run properly, you must include a create_channel method in your target py file
that returns a Channel model. This function will be responsible for building a tree based on ricecooker.classes.

Start by importing Channel from ricecooker.classes.nodes and create a Channel model. The Channel model has
the following fields:

	channel_id (str): channel’s unique id

	domain (str): who is providing the content (e.g. learningequality.org

	title (str): name of channel

	description (str): description of the channel (optional)

	thumbnail (str): local path or url to image file (optional)

For example:
```
from ricecooker.classes.nodes import Channel

def construct_channel(args):



	channel = Channel(

	domain=”learningequality.org”,
channel_id=”rice-channel”,
title=”Rice Channel”,
thumbnail=”http://path/to/some/image.png”





)
_build_tree(channel, <source tree>)         # see sample_program.py for example build_tree function

return channel











```


	Building the Tree

Once your channel is created, you can start adding content. To do this, you will need to convert your data to
the rice cooker’s models. Here are the model types that are available to you:

	Topic: folders to add hierarchy to the channel’s content

	Video: mp4

	Audio: mp3 or wav

	Document: pdf

	Exercise: assessment-based content with questions

	HTML5App: zip containing html content (must have index.html file at topmost level)

The ricecooker.classes.nodes module has the function guess_content_kind, which takes in a file or list of
files as well as a list of questions (if available) and determines what model best suits those files
(if no match could be found, an UnknownContentKindError will be raised). For example:
```


>> guess_content_kind([])
‘topic’
>> guess_content_kind([“http://path/to/some/file.mp4”])
‘video’
>> guess_content_kind([], [“Question?”])
‘exercise’




```

Once you have created the model, add it to a parent node with <parent-node>.add_child(<child-node>)

	Adding Exercises

Exercises are special model kinds that have questions used for assessment. In order to set the criteria
for completing exercises, you must set exercise_data to equal a dict containing a mastery_model field
based on the mastery models provided under le_utils.constants.exercises. If no data is provided,
the rice cooker will default to mastery at 3 of 5 correct. For example:
```
node = Exercise(


exercise_data={‘mastery_model’: exercises.M_OF_N, ‘randomize’: True, ‘m’: 3, ‘n’: 5},
…




To add a question to your exercise, you must first create a question model from ricecooker.classes.questions.
Your program is responsible for determining which question type to create. Here are the available question types:


	PerseusQuestion: special question type for pre-formatted perseus questions


	MultipleSelectQuestion: questions that have multiple correct answers (e.g. check all that apply)


	SingleSelectQuestion: questions that only have one right answer (e.g. radio button questions)


	InputQuestion: questions that have text-based answers (e.g. fill in the blank)


	FreeResponseQuestion: questions that require subjective answers (ungraded)




To set the correct answer(s) for input questions, you must provide an array of all of the accepted answers (answers [str]).
For multiple selection questions, you must provide a list of all of the possible choices as well as an array of the correct
answers (all_answers [str]) and correct_answers [str] respectively). For single selection questions, you must provide
a list of all possible choices as well as the correct answer (all_answers [str] and correct_answer str respectively).

To add images to a question’s question, answers, or hints, format the image path with ‘![](<path/to/some/file.png>)’

Once you have created the appropriate question model, add it to an exercise model with <exercise-node>.add_question(<question>)






	
	Obtaining an Authorization Token

	You will need an authorization token to create a channel on Kolibri Studio. In order to obtain one:
1. Create an account on [Kolibri Studio](https://contentworkshop.learningequality.org/).
2. Navigate to the Tokens tab under your Settings page.
3. Copy the given authorization token.
4. Set token=”<auth-token>” in your call to uploadchannel (alternatively, you can create a file with your


authorization token and set token=”<path-to-file.txt>”).










	Running the Rice Cooker



Run python -m ricecooker uploadchannel [-huv] “<path-to-py-file>” [–debug] [–warn] [–compress] [–token=<token>] [–resume [–step=<step>] | –reset] [–prompt] [–publish]  [[OPTIONS] …]
- -h (help) will print how to use the rice cooker
- -v (verbose) will print what the rice cooker is doing
- -u (update) will force the ricecooker to redownload all files
- –debug will send data to localhost if you have Kolibri Studio running locally
- –warn will print out warnings during rice cooking session





	
	–compress will compress your high resolution videos to save space

	
	–token will authorize you to create your channel (found under Kolibri Studio settings page)


	–resume will resume your previous rice cooking session


	–step will specify at which step to resume your session


	–reset will automatically start the rice cooker from the beginning


	–prompt will prompt you to open your channel once it’s been uploaded


	–publish will automatically publish your channel once it’s been uploaded


	[OPTIONS] any additional keyword arguments you would like to pass to your construct_channel method





















          

      

      

    

  

    
      
          
            
  
ricecooker package


Submodules




ricecooker.classes module




ricecooker.commands module




ricecooker.config module


	
ricecooker.config.add_nodes_url()

	add_nodes_url: returns url to add nodes to channel
Args: None
Returns: string url to add_nodes endpoint






	
ricecooker.config.authentication_url()

	authentication_url: returns url to login to Kolibri Studio
Args: None
Returns: string url to authenticate_user_internal endpoint






	
ricecooker.config.create_channel_url()

	create_channel_url: returns url to create channel
Args: None
Returns: string url to create_channel endpoint






	
ricecooker.config.file_diff_url()

	file_diff_url: returns url to get file diff
Args: None
Returns: string url to file_diff endpoint






	
ricecooker.config.file_upload_url()

	file_upload_url: returns url to upload files
Args: None
Returns: string url to file_upload endpoint






	
ricecooker.config.finish_channel_url()

	finish_channel_url: returns url to finish uploading a channel
Args: None
Returns: string url to finish_channel endpoint






	
ricecooker.config.get_file_store()

	get_file_store: returns path to list of downloaded files
Args: None
Returns: string path to list of downloaded files






	
ricecooker.config.get_restore_path(filename)

	get_restore_path: returns path to directory for restoration points
:param filename: Name of file to store
:type filename: str

Returns: string path to file






	
ricecooker.config.get_storage_path(filename)

	get_storage_path: returns path to storage directory for downloading content
Args: filename (str): Name of file to store
Returns: string path to file






	
ricecooker.config.init_file_mapping_store()

	init_file_mapping_store: creates log to keep track of downloaded files
Args: None
Returns: None






	
ricecooker.config.open_channel_url(channel)

	open_channel_url: returns url to uploaded channel
:param channel: channel id of uploaded channel
:type channel: str

Returns: string url to open channel






	
ricecooker.config.publish_channel_url()

	open_channel_url: returns url to publish channel
Args: None
Returns: string url to publish channel






	
ricecooker.config.set_file_store(file_store)

	set_file_store: saves list of downloaded files
Args: file_store ([{path: {size:number, preset:str, filename:str, original_filename:str}}]): list of downloaded files in json format
Returns: None








ricecooker.exceptions module


	
exception ricecooker.exceptions.FileNotFoundException(*args, **kwargs)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

FileNotFoundException: raised when file path is not found






	
exception ricecooker.exceptions.InvalidCommandException(*args, **kwargs)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

InvalidCommandException: raised when unrecognized command is entered






	
exception ricecooker.exceptions.InvalidFormatException(*args, **kwargs)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

InvalidFormatException: raised when file format is unrecognized






	
exception ricecooker.exceptions.InvalidNodeException(*args, **kwargs)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

InvalidNodeException: raised when node is improperly formatted






	
exception ricecooker.exceptions.InvalidQuestionException(*args, **kwargs)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

InvalidQuestionException: raised when question is improperly formatted






	
exception ricecooker.exceptions.InvalidUsageException(*args, **kwargs)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

InvalidUsageException: raised when command line syntax is invalid






	
exception ricecooker.exceptions.UnknownContentKindError(*args, **kwargs)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

UnknownContentKindError: raised when content kind is unrecognized






	
exception ricecooker.exceptions.UnknownQuestionTypeError(*args, **kwargs)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

UnknownQuestionTypeError: raised when question type is unrecognized






	
ricecooker.exceptions.raise_for_invalid_channel(channel)

	






ricecooker.managers module




ricecooker.sample_program module




Module contents







          

      

      

    

  

    
      
          
            
  
Usage

To use ricecooker in a project:

import ricecooker









          

      

      

    

  _static/comment-bright.png





_static/ajax-loader.gif





_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





_static/file.png





_static/minus.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to ricecooker’s documentation!
        


      


    
  

_static/up-pressed.png





_static/up.png





_static/plus.png





